Debouncing button
Concept:
Clock domain:
A clock domain is a part of a design that has a clock that operates asynchronous to, or has a variable phase relationship with, another clock in the design. For example, a clock and its derived clock (via a clock divider) are in the same clock domain because they have a constant phase relationship. But, 50MHz and 37MHz clocks (whose phase relationship changes over time) define two separate clock domains. Figure 1 illustrates three different clocks in a design, but synchronous to each other. CLK, its inversion and D1 (derived from CLK) are synchronous to each other.

Reference: https://filebox.ece.vt.edu/~athanas/4514/ledadoc/html/pol_cdc.html

Asynchronous vs Synchronous Digital Circuits:
From Wikipedia, an asynchronous circuit, or self-timed circuit, is a sequential digital logic circuit which is not governed by a clock circuit or global clock signal. This type is contrasted with a synchronous circuit in which changes to the signal values in the circuit are triggered by repetitive pulses called a clock signal.

Metastability
From Embedded Micro, there are setup and hold timing constraints in the flip-flop circuits (mostly is the synchronous circuits). The setup constraint tells you how long before the positive edge of the clock the value on the D side (input) must be stable. The hold time tells you how long after the positive edge of the clock the D side (input) must continue to be stable.
Q (output) may take a random value of 0 or 1 or will get stuck somewhere between 0 and 1 if there is setup and hold time violation. This is called metastability. This happens when we press a button. It's impossible for us to guarantee that the button won't be pressed and violate the setup and hold constraints. One of the suggested solutions is to have two flip-flops to drastically reduce that chance. However, this does not solve the metastability problem.

Synchronization
The main responsibility of a synchronizer is to allow sufficient time such that any meta-sable output can settle down to a stable value in the destination clock domain. The most common synchronizer used by designers is two-flip-flop (2-FF) synchronizers as shown below. Usually the control signals in a design are synchronized by 2-FF synchronizers.
In a 2-FF synchronizer, the first flip-flop samples the asynchronous input signal into the destination clock domain and waits for a full destination clock cycle to permit any meta-stability on the stage-1 output signal to decay, then the stage-1 signal is sampled by the same clock into a second stage flip-flop, with the intended goal that the stage-2 signal is now a stable and valid signal synchronized into the destination clock domain. It is theoretically possible for the stage-1 signal to still be sufficiently meta-stable by the time the signal is clocked into the second stage to cause the stage-2 signal to also go meta-stable.
[image: https://filebox.ece.vt.edu/~athanas/4514/ledadoc/html/images/pol_cdc5.gif]
https://filebox.ece.vt.edu/~athanas/4514/ledadoc/html/pol_cdc.html

Debonucing

When you press a button, there is a chance that the button will not simply go from open to close. Since a button is a mechanical device, the contacts can bounce. (From Embedded Micro) For a short period after the button is pressed the value you read from an IO pin may toggle between 0 and 1 a few times before settling on the actual value.

To debounce a button, you just need to require that for a button to register as being pressed, it must look like it's being pressed for a set amount of time. In this case, being pressed is when the value of the button is 1. If you read enough 1's in a row it is safe to assume that the button has stopped bouncing and you can register one button press. If you fail to do this and you are using the button to increment a counter, then the counter may increase by more than 1 per button press since it will appear that each bounce was a separate press.

Design:

There are following inputs and outputs
	Inputs / Outputs
	Signal name
	Description

	Input
	clk
	Clock signal to synchronize the button input

	Input
	btn
	Button pressed

	Output
	LED
	Light up LED when button is pressed

	Output
	dbsig
	Output the debounced signal to the scope

	Output
	button_out1
	Output the flip flop 1 signal to scope

	Output
	[bookmark: _GoBack]button_out2
	Output the flip flop 2 signal to scope

There are following internal signals
	Type of signal
	Signal name
	Description

	Register (reg)
	button_ff1
	Btn flip-flop1 for synchronization

	Register (reg)
	button_ff2
	Btn filp-flop2 for synchronization

	Register (reg)
	[20:0]count
	21 bits counter to increment when button is pressed or released

	Constant (Parameter)
	threshold
	Gauge how long the button should be pressed. In this case, we want 2ms, so the number we need to count is 100,000 for 100MHz clock

How does the logic work?
Firstly, we use two flip-flops (reg button_ff1 & reg button_ff2 to synchronize the button signal to the clock domain “clk”. When the push-button is pushed or released, we increment or decrement the counter “count”. The counter has to reach threshold before we decide that the push-button state has changed. We implement this by conditional statements:
Condition 1: Button flip-flop 2 (reg button_ff2) is high “1” and count “count” isn't at the count limit.
This makes sure that we won't count up at the limit. If this condition matches, we will count up (this means btn pressed)
Condition 2: Button flip-flop 2 (reg button_ff2) is low “0” and the count has at least 1 in it.
This makes sure no subtraction when count is 0. If this condition matches, we will count down (btn released)
Now, we need to decide when the button is pressed or not. To do this, we create a constant (parameter) “threshold” gauge how long button pressed to determine it is in pressed state. If the count is greater the threshold, the debounced signal “dbsign” will be high “1”. Otherwise, it will be low “0”.
We first simulate the logic and then scope out two signals (button_out1 and button_out2) through Pmod connectors to the Logic Analyzer and look at the timing diagram. In addition, we assign LED to debounced signal (dbsig), i.e. if the dbsig is “1”, LED lights up. Otherwise, it will be off.

Simulation:
Follow the step to create the testbench and run the simulation http://www.instructables.com/id/How-to-Use-Vivado-Simluation/

A 20ns clock is created and btn input is set as 0 and then 1 after 10ns. The dbsig and LED signal will be “1” at 2ms. Run the simulation at 20ms by change the simulation time (see below picture)
Remember to create two procedure block (one always for clock generation and one for stimulus (btn)) to avoid any intra signal delay.
There is 30ns delay between button_ff1 and button_ff2. It shows in the simulation of button_out1 and button_out2.
[image:]

[image:]
[image:]
Implementation:
Create constraint file from Vivado. Refer to http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug935-vivado-io-clock-planning-tutorial.pdf (see Lab 2: Post-Synthesis I/O Planning) and http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug945-vivado-using-constraints-tutorial.pdf for timing constraint
Then, run the synthesis and implementation and eventually generate bitstream file to program it on FPGA. (If you are not familiar with these two processes, you can take a look at http://www.instructables.com/id/How-to-use-Verilog-and-Basys-3-to-do-3-bit-binary-/ from step 8-11.

Timing Analysis through Logic Analyzer
We port button flip flop signals (button_out1 and button_out2) and dbsig to Pmod port JC1, JC2 and JC3 and then connect ports to Digilent Analog Discovery 2 digital channels 0, 1 and 2

[image:]
[image:]

Verilog Code:
`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 07/17/2016 05:01:56 PM
// Design Name:
// Module Name: debouncing
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module debouncing #(parameter threshold = 100000)// set parameter thresehold to guage how long button pressed
(
input clk, //clock signal
input btn, //input button
output LED, //LED output. Light up when btn is pressed
output reg dbsig, //debounced signal to logic analyzer
output button_out1, //flip-flop1 signal to logic analyzer
output button_out2 //flip-flop2 signal to logic analyzer
);

reg button_ff1 = 0; //button flip-flop for synchronization. Initialize it to 0
reg button_ff2 = 0; //button flip-flop for synchronization. Initialize it to 0
reg [20:0]count = 0; //20 bits count for increment & decrement when button is pressed or released. Initialize it to 0

// First use two flip-flops to synchronize the button signal the "clk" clock domain

always @(posedge clk)begin
button_ff1 <= btn;
button_ff2 <= button_ff1;
end

// When the push-button is pushed or released, we increment or decrement the counter
// The counter has to reach threshold before we decide that the push-button state has changed
always @(posedge clk) begin
 if (button_ff2) //if button_ff2 is 1
 begin
 if (~&count)//if it isn't at the count limit. Make sure won't count up at the limit. First AND all count and then not the AND
 count <= count+1; // when btn pressed, count up
 end else begin
 if (|count)//if count has at least 1 in it. Make sure no subtraction when count is 0
 count <= count-1; //when btn relesed, count down
 end
 if (count > threshold)//if the count is greater the threshold
 dbsig <= 1; //debounced signal is 1
 else
 dbsig <= 0; //debounced signal is 0
end

assign LED = dbsig; // assign debounced signal to LED
assign button_out1 = button_ff1; //assign button_out1 to button_ff1
assign button_out2 = button_ff2; //assign button_out2 to button_ff2

endmodule

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 12/19/2016 09:21:44 PM
// Design Name:
// Module Name: debounce_tb
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module debounce_tb();

//Inputs in the module enable_sr. Need to use register type
reg clk = 0; //clock signal
reg btn; //input button

//Outputs in the module enable_sr. Need to use net type
wire LED; //LED output. Light up when btn is pressed
wire dbsig; //debounced signal to logic analyzer
wire button_out1; //flip-flop1 signal to logic analyzer
wire button_out2; //flip-flop2 signal to logic analyzer

// Instantiate the Unit Under Test (UUT) for module debouncing
debouncing uut(
 .clk(clk),
 .btn(btn),
 .LED(LED),
 .dbsig(dbsig),
 .button_out1(button_out1),
 .button_out2(button_out2)
);

// Generate the continuous clock signal. Wait for 10ns. Period is 20ns
always #10 clk = ~clk;

//Generate the button stimulus
initial begin
 btn = 0;
 #10 btn = 1;
end

// Need initial whenever we run finish or we need to include it in the begin end
	initial
		#4000 $finish;

endmodule

image2.png

image3.png

image4.png

image5.png

image6.png

image1.gif

