
A fast approximation for decibel to amplitude conversion on embedded systems.

Introduction and motivation

Many audio applications, such as dynamic range compression, require the conversion of a signal

measured in decibels (𝑑𝐵) to amplitude (𝑌). This transformation is straightforward to implement on

many systems.

𝑌 = 10
𝑑𝐵
20

However, on an embedded system this may be too slow and the memory requirements for a lookup

table may be prohibitive. Therefore, a fast and accurate approximation is required.

Combining lookup tables with interpolation.

To reduce the lookup table memory requirements, we precompute a subset of the values in the

desired range and then perform interpolation to obtain the “in between values”. We can separate

the integral component(𝐼) of this transform from the fractional component (𝐹) of this transform.

𝑌 = 10
𝑑𝐵
20 = 10

𝐼+𝐹
20 = (10

𝐼
20) (10

𝐹
20)

We use a lookup table for estimating 10
𝐼

20 . This requires less than 400 bytes for 16-bit integers. For

the fractional part we use a cubic interpolation based on Newtons divided differences

 10
𝑥

20 ≈ 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥) + 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥)(𝑥 − 1) + 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3](𝑥)(𝑥 − 1)(𝑥 − 2)

Where 𝑓[𝑥0 … 𝑥𝑛] is the notation for newton’s divided differences. The divided differences can be

defined recursively as

𝑓[𝑥0 … 𝑥𝑛] =
𝑓[𝑥1 … 𝑥𝑛] − 𝑓[𝑥0 … 𝑥𝑛−1]

𝑥𝑛 − 𝑥0
, 𝑓[𝑥0] = 𝑓(𝑥0)

For the case of 10
𝑥

20 and 0 < x < 1 We note that

𝑓[𝑥0 … 𝑥𝑛] =
(10

1
20 − 1)

𝑛

𝑛!

Making the substitutions

𝑎 = 𝑓[𝑥0], 𝑏 = 𝑓[𝑥0, 𝑥1], 𝑐 = 𝑓[𝑥0, 𝑥1, 𝑥2], 𝑑 = 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3]

We get

 10
𝑥

20 ≈ 𝑎 + 𝑏𝑥 + 𝑐𝑥(𝑥 − 1) + 𝑑𝑥(𝑥 − 1)(𝑥 − 2)

= 𝑑𝑥3 + (𝑐 − 3𝑑)𝑥2 + (𝑏 − 𝑐 + 2𝑑)𝑥 + 𝑎

When we calculate the coefficients of this polynomial we get

0.0003027786𝑥3 + 0.006535915𝑥2 + 0.115179760𝑥 + 1

The final approximation is

𝑌 = 10
𝐼+𝐹
20 = (10

𝐼
20) (𝐹(𝐹(0.0003027786𝐹 + 0.006535915) + 0.115179760) + 1)

The accuracy is better than 1 in 120,000 and the approximation runs in 0.23 microseconds using only

400 bytes of memory. Job done!

