/* Nokia 5100 LCD Example Code Graphics driver and PCD8544 interface code for SparkFun's 84x48 Graphic LCD. https://www.sparkfun.com/products/10168 by: Jim Lindblom adapted from code by Nathan Seidle and mish-mashed with code from the ColorLCDShield. date: October 10, 2013 license: Beerware. Feel free to use, reuse, and modify this code as you see fit. If you find it useful, and we meet someday, you can buy me a beer. This all-inclusive sketch will show off a series of graphics functions, like drawing lines, circles, squares, and text. Then it'll go into serial monitor echo mode, where you can type text into the serial monitor, and it'll be displayed on the LCD. This stuff could all be put into a library, but we wanted to leave it all in one sketch to keep it as transparent as possible. Hardware: (Note most of these pins can be swapped) Graphic LCD Pin ---------- Arduino Pin 1-VCC ---------------- 5V 2-GND ---------------- GND 3-SCE ---------------- 7 4-RST ---------------- 6 5-D/C ---------------- 5 6-DN(MOSI) ---------------- 11 7-SCLK ---------------- 13 8-LED - 330 Ohm res -- 9 The SCLK, DN(MOSI), must remain where they are, but the other pins can be swapped. The LED pin should remain a PWM-capable pin. Don't forget to stick a current-limiting resistor in line between the LCD's LED pin and Arduino pin 9! */ #include // We'll use SPI to transfer data. Faster! /* PCD8544-specific defines: */ #define LCD_COMMAND 0 #define LCD_DATA 1 /* 84x48 LCD Defines: */ #define LCD_WIDTH 84 // Note: x-coordinates go wide #define LCD_HEIGHT 48 // Note: y-coordinates go high #define WHITE 0 // For drawing pixels. A 0 draws white. #define BLACK 1 // A 1 draws black. /* Pin definitions: Most of these pins can be moved to any digital or analog pin. DN(MOSI)and SCLK should be left where they are (SPI pins). The LED (backlight) pin should remain on a PWM-capable pin. */ const int scePin = 7; // SCE - Chip select, pin 3 on LCD. const int rstPin = 6; // RST - Reset, pin 4 on LCD. const int dcPin = 5; // DC - Data/Command, pin 5 on LCD. const int sdinPin = 11; // DN(MOSI) - Serial data, pin 6 on LCD. const int sclkPin = 13; // SCLK - Serial clock, pin 7 on LCD. const int blPin = 9; // LED - Backlight LED, pin 8 on LCD. /* Font table: This table contains the hex values that represent pixels for a font that is 5 pixels wide and 8 pixels high. Each byte in a row represents one, 8-pixel, vertical column of a character. 5 bytes per character. */ static const byte ASCII[][5] = { // First 32 characters (0x00-0x19) are ignored. These are // non-displayable, control characters. {0x00, 0x00, 0x00, 0x00, 0x00} // 0x20 ,{0x00, 0x00, 0x5f, 0x00, 0x00} // 0x21 ! ,{0x00, 0x07, 0x00, 0x07, 0x00} // 0x22 " ,{0x14, 0x7f, 0x14, 0x7f, 0x14} // 0x23 # ,{0x24, 0x2a, 0x7f, 0x2a, 0x12} // 0x24 $ ,{0x23, 0x13, 0x08, 0x64, 0x62} // 0x25 % ,{0x36, 0x49, 0x55, 0x22, 0x50} // 0x26 & ,{0x00, 0x05, 0x03, 0x00, 0x00} // 0x27 ' ,{0x00, 0x1c, 0x22, 0x41, 0x00} // 0x28 ( ,{0x00, 0x41, 0x22, 0x1c, 0x00} // 0x29 ) ,{0x14, 0x08, 0x3e, 0x08, 0x14} // 0x2a * ,{0x08, 0x08, 0x3e, 0x08, 0x08} // 0x2b + ,{0x00, 0x50, 0x30, 0x00, 0x00} // 0x2c , ,{0x08, 0x08, 0x08, 0x08, 0x08} // 0x2d - ,{0x00, 0x60, 0x60, 0x00, 0x00} // 0x2e . ,{0x20, 0x10, 0x08, 0x04, 0x02} // 0x2f / ,{0x3e, 0x51, 0x49, 0x45, 0x3e} // 0x30 0 ,{0x00, 0x42, 0x7f, 0x40, 0x00} // 0x31 1 ,{0x42, 0x61, 0x51, 0x49, 0x46} // 0x32 2 ,{0x21, 0x41, 0x45, 0x4b, 0x31} // 0x33 3 ,{0x18, 0x14, 0x12, 0x7f, 0x10} // 0x34 4 ,{0x27, 0x45, 0x45, 0x45, 0x39} // 0x35 5 ,{0x3c, 0x4a, 0x49, 0x49, 0x30} // 0x36 6 ,{0x01, 0x71, 0x09, 0x05, 0x03} // 0x37 7 ,{0x36, 0x49, 0x49, 0x49, 0x36} // 0x38 8 ,{0x06, 0x49, 0x49, 0x29, 0x1e} // 0x39 9 ,{0x00, 0x36, 0x36, 0x00, 0x00} // 0x3a : ,{0x00, 0x56, 0x36, 0x00, 0x00} // 0x3b ; ,{0x08, 0x14, 0x22, 0x41, 0x00} // 0x3c < ,{0x14, 0x14, 0x14, 0x14, 0x14} // 0x3d = ,{0x00, 0x41, 0x22, 0x14, 0x08} // 0x3e > ,{0x02, 0x01, 0x51, 0x09, 0x06} // 0x3f ? ,{0x32, 0x49, 0x79, 0x41, 0x3e} // 0x40 @ ,{0x7e, 0x11, 0x11, 0x11, 0x7e} // 0x41 A ,{0x7f, 0x49, 0x49, 0x49, 0x36} // 0x42 B ,{0x3e, 0x41, 0x41, 0x41, 0x22} // 0x43 C ,{0x7f, 0x41, 0x41, 0x22, 0x1c} // 0x44 D ,{0x7f, 0x49, 0x49, 0x49, 0x41} // 0x45 E ,{0x7f, 0x09, 0x09, 0x09, 0x01} // 0x46 F ,{0x3e, 0x41, 0x49, 0x49, 0x7a} // 0x47 G ,{0x7f, 0x08, 0x08, 0x08, 0x7f} // 0x48 H ,{0x00, 0x41, 0x7f, 0x41, 0x00} // 0x49 I ,{0x20, 0x40, 0x41, 0x3f, 0x01} // 0x4a J ,{0x7f, 0x08, 0x14, 0x22, 0x41} // 0x4b K ,{0x7f, 0x40, 0x40, 0x40, 0x40} // 0x4c L ,{0x7f, 0x02, 0x0c, 0x02, 0x7f} // 0x4d M ,{0x7f, 0x04, 0x08, 0x10, 0x7f} // 0x4e N ,{0x3e, 0x41, 0x41, 0x41, 0x3e} // 0x4f O ,{0x7f, 0x09, 0x09, 0x09, 0x06} // 0x50 P ,{0x3e, 0x41, 0x51, 0x21, 0x5e} // 0x51 Q ,{0x7f, 0x09, 0x19, 0x29, 0x46} // 0x52 R ,{0x46, 0x49, 0x49, 0x49, 0x31} // 0x53 S ,{0x01, 0x01, 0x7f, 0x01, 0x01} // 0x54 T ,{0x3f, 0x40, 0x40, 0x40, 0x3f} // 0x55 U ,{0x1f, 0x20, 0x40, 0x20, 0x1f} // 0x56 V ,{0x3f, 0x40, 0x38, 0x40, 0x3f} // 0x57 W ,{0x63, 0x14, 0x08, 0x14, 0x63} // 0x58 X ,{0x07, 0x08, 0x70, 0x08, 0x07} // 0x59 Y ,{0x61, 0x51, 0x49, 0x45, 0x43} // 0x5a Z ,{0x00, 0x7f, 0x41, 0x41, 0x00} // 0x5b [ ,{0x02, 0x04, 0x08, 0x10, 0x20} // 0x5c \ ,{0x00, 0x41, 0x41, 0x7f, 0x00} // 0x5d ] ,{0x00, 0x41, 0x41, 0x7f, 0x00} // 0x5d ] ,{0x04, 0x02, 0x01, 0x02, 0x04} // 0x5e ^ ,{0x40, 0x40, 0x40, 0x40, 0x40} // 0x5f _ ,{0x00, 0x01, 0x02, 0x04, 0x00} // 0x60 ` ,{0x20, 0x54, 0x54, 0x54, 0x78} // 0x61 a ,{0x7f, 0x48, 0x44, 0x44, 0x38} // 0x62 b ,{0x38, 0x44, 0x44, 0x44, 0x20} // 0x63 c ,{0x38, 0x44, 0x44, 0x48, 0x7f} // 0x64 d ,{0x38, 0x54, 0x54, 0x54, 0x18} // 0x65 e ,{0x08, 0x7e, 0x09, 0x01, 0x02} // 0x66 f ,{0x0c, 0x52, 0x52, 0x52, 0x3e} // 0x67 g ,{0x7f, 0x08, 0x04, 0x04, 0x78} // 0x68 h ,{0x00, 0x44, 0x7d, 0x40, 0x00} // 0x69 i ,{0x20, 0x40, 0x44, 0x3d, 0x00} // 0x6a j ,{0x7f, 0x10, 0x28, 0x44, 0x00} // 0x6b k ,{0x00, 0x41, 0x7f, 0x40, 0x00} // 0x6c l ,{0x7c, 0x04, 0x18, 0x04, 0x78} // 0x6d m ,{0x7c, 0x08, 0x04, 0x04, 0x78} // 0x6e n ,{0x38, 0x44, 0x44, 0x44, 0x38} // 0x6f o ,{0x7c, 0x14, 0x14, 0x14, 0x08} // 0x70 p ,{0x08, 0x14, 0x14, 0x18, 0x7c} // 0x71 q ,{0x7c, 0x08, 0x04, 0x04, 0x08} // 0x72 r ,{0x48, 0x54, 0x54, 0x54, 0x20} // 0x73 s ,{0x04, 0x3f, 0x44, 0x40, 0x20} // 0x74 t ,{0x3c, 0x40, 0x40, 0x20, 0x7c} // 0x75 u ,{0x1c, 0x20, 0x40, 0x20, 0x1c} // 0x76 v ,{0x3c, 0x40, 0x30, 0x40, 0x3c} // 0x77 w ,{0x44, 0x28, 0x10, 0x28, 0x44} // 0x78 x ,{0x0c, 0x50, 0x50, 0x50, 0x3c} // 0x79 y ,{0x44, 0x64, 0x54, 0x4c, 0x44} // 0x7a z ,{0x00, 0x08, 0x36, 0x41, 0x00} // 0x7b { ,{0x00, 0x00, 0x7f, 0x00, 0x00} // 0x7c | ,{0x00, 0x41, 0x36, 0x08, 0x00} // 0x7d } ,{0x10, 0x08, 0x08, 0x10, 0x08} // 0x7e ~ ,{0x78, 0x46, 0x41, 0x46, 0x78} // 0x7f DEL }; /* The displayMap variable stores a buffer representation of the pixels on our display. There are 504 total bits in this array, same as how many pixels there are on a 84 x 48 display. Each byte in this array covers a 8-pixel vertical block on the display. Each successive byte covers the next 8-pixel column over until you reach the right-edge of the display and step down 8 rows. To update the display, we first have to write to this array, then call the updateDisplay() function, which sends this whole array to the PCD8544. Because the PCD8544 won't let us write individual pixels at a time, this is how we can make targeted changes to the display. */ byte displayMap[LCD_WIDTH * LCD_HEIGHT / 8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (0,0)->(11,7) ~ These 12 bytes cover an 8x12 block in the left corner of the display 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (12,0)->(23,7) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, // (24,0)->(35,7) 0xF0, 0xF8, 0xFC, 0xFC, 0xFE, 0xFE, 0xFE, 0xFE, 0x1E, 0x0E, 0x02, 0x00, // (36,0)->(47,7) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (48,0)->(59,7) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (60,0)->(71,7) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (72,0)->(83,7) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (0,8)->(11,15) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (12,8)->(23,15) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, // (24,8)->(35,15) 0x0F, 0x1F, 0x3F, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFC, 0xF8, // (36,8)->(47,15) 0xF8, 0xF0, 0xF8, 0xFE, 0xFE, 0xFC, 0xF8, 0xE0, 0x00, 0x00, 0x00, 0x00, // (48,8)->(59,15) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (60,8)->(71,15) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (72,8)->(83,15) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (0,16)->(11,23) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (12,16)->(23,23) 0x00, 0x00, 0xF8, 0xFC, 0xFE, 0xFE, 0xFF, 0xFF, 0xF3, 0xE0, 0xE0, 0xC0, // (24,16)->(35,23) 0xC0, 0xC0, 0xE0, 0xE0, 0xF1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // (36,16)->(47,23) 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3E, 0x00, 0x00, 0x00, // (48,16)->(59,23) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (60,16)->(71,23) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (72,16)->(83,23) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (0,24)->(11,31) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (12,24)->(23,31) 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // (24,24)->(35,31) 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // (36,24)->(47,31) 0xFF, 0xFF, 0xFF, 0x7F, 0x3F, 0x1F, 0x07, 0x01, 0x00, 0x00, 0x00, 0x00, // (48,24)->(59,31) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (60,24)->(71,31) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (72,24)->(83,31) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (0,32)->(11,39) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (12,32)->(23,39) 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x3F, 0x1F, // (24,32)->(35,39) 0x0F, 0x0F, 0x0F, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x03, 0x03, // (36,32)->(47,39) 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (48,32)->(59,39) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (60,32)->(71,39) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (72,32)->(83,39) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (0,40)->(11,47) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (12,40)->(23,47) 0x00, 0x00, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, // (24,40)->(35,47) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (36,40)->(47,47) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (48,40)->(59,47) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (60,40)->(71,47) 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // (72,40)->(83,47) !!! The bottom right pixel! }; /* This array is the same size as the displayMap. We'll use it as an example of how to draw a bitmap. xkcd comic transposing makes for an excellent display application. For reference, see: http://xkcd.com/149/ */ char xkcdSandwich[504] = { 0xFF, 0x8D, 0x9F, 0x13, 0x13, 0xF3, 0x01, 0x01, 0xF9, 0xF9, 0x01, 0x81, 0xF9, 0xF9, 0x01, 0xF1, 0xF9, 0x09, 0x09, 0xFF, 0xFF, 0xF1, 0xF9, 0x09, 0x09, 0xF9, 0xF1, 0x01, 0x01, 0x01, 0x01, 0x01, 0xF9, 0xF9, 0x09, 0xF9, 0x09, 0xF9, 0xF1, 0x01, 0xC1, 0xE9, 0x29, 0x29, 0xF9, 0xF1, 0x01, 0xFF, 0xFF, 0x71, 0xD9, 0x01, 0x01, 0xF1, 0xF9, 0x29, 0x29, 0xB9, 0xB1, 0x01, 0x01, 0x01, 0xF1, 0xF1, 0x11, 0xF1, 0xF1, 0xF1, 0xE1, 0x01, 0xE1, 0xF1, 0x51, 0x51, 0x71, 0x61, 0x01, 0x01, 0xC1, 0xF1, 0x31, 0x31, 0xF1, 0xFF, 0xFF, 0x00, 0x01, 0x01, 0x01, 0x01, 0x60, 0xE0, 0xA0, 0x01, 0x01, 0x81, 0xE1, 0x61, 0x60, 0xC0, 0x01, 0xE1, 0xE1, 0x21, 0x21, 0xE0, 0xC1, 0x01, 0xC1, 0xE1, 0x20, 0x20, 0xFC, 0xFC, 0xE0, 0xE0, 0xC1, 0xE1, 0xE0, 0xC1, 0xE0, 0xE1, 0x01, 0xFC, 0xFC, 0x21, 0x21, 0xE1, 0xC1, 0xE5, 0xE4, 0x01, 0xC1, 0xE0, 0x20, 0x21, 0x20, 0x00, 0x01, 0xFD, 0xFD, 0x21, 0x20, 0xE0, 0x00, 0x00, 0x01, 0x01, 0xC0, 0x61, 0x31, 0x31, 0x21, 0x20, 0xC0, 0x81, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x03, 0x02, 0x03, 0x01, 0x00, 0x01, 0x03, 0xF2, 0x1A, 0x0B, 0x08, 0x0B, 0x1B, 0x10, 0x60, 0xE3, 0x03, 0x00, 0x01, 0x03, 0x02, 0x02, 0x03, 0x03, 0x00, 0x03, 0x03, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x03, 0x03, 0x03, 0x03, 0x00, 0x01, 0x03, 0x02, 0x02, 0x03, 0x01, 0x00, 0x03, 0x03, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x3E, 0x63, 0x80, 0x80, 0x80, 0x80, 0x60, 0x3F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFE, 0x01, 0x01, 0x01, 0x02, 0x03, 0x3E, 0xE8, 0xF8, 0xF0, 0xD0, 0x90, 0x18, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x38, 0xFF, 0x0C, 0x38, 0xE0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33, 0x5F, 0x8F, 0x84, 0x05, 0x07, 0x06, 0x0C, 0x0E, 0x0E, 0x0C, 0x14, 0x34, 0x68, 0x88, 0xD8, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x10, 0x10, 0x10, 0xF0, 0xE0, 0x00, 0xF0, 0xF0, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x20, 0x38, 0x0E, 0x01, 0xC0, 0x3F, 0xE0, 0x00, 0x00, 0x03, 0x0E, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0xB6, 0xED, 0xC0, 0xC0, 0xC0, 0xE0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA1, 0xA1, 0xA1, 0xA1, 0xA1, 0xA1, 0xA1, 0xE1, 0xE1, 0xC1, 0xEF, 0xBB, 0x83, 0x86, 0x88, 0xB0, 0x80, 0x80, 0x80, 0x8F, 0x90, 0x90, 0x90, 0x9F, 0x8F, 0x80, 0x9F, 0x9F, 0x87, 0x8D, 0x98, 0x80, 0x8C, 0x9E, 0x92, 0x92, 0x9F, 0xC0, 0xC7, 0xFF, 0xB8, 0x8F, 0x80, 0x90, 0x90, 0xC0, 0xF0, 0x8E, 0x81, 0x80, 0x81, 0x8F, 0xB8, 0xE0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0xFF, }; void setup() { Serial.begin(9600); lcdBegin(); // This will setup our pins, and initialize the LCD setContrast(55); // Pretty good value, play around with it updateDisplay(); // with displayMap untouched, SFE logo delay(2000); lcdFunTime(); // Runs a 30-second demo of graphics functions // Wait for serial to come in, then clear display and go to echo while (!Serial.available()) ; clearDisplay(WHITE); updateDisplay(); } // Loop turns the display into a local serial monitor echo. // Type to the Arduino from the serial monitor, and it'll echo // what you type on the display. Type ~ to clear the display. void loop() { static int cursorX = 0; static int cursorY = 0; if (Serial.available()) { char c = Serial.read(); switch (c) { case '\n': // New line cursorY += 8; break; case '\r': // Return feed cursorX = 0; break; case '~': // Use ~ to clear the screen. clearDisplay(WHITE); updateDisplay(); cursorX = 0; // reset the cursor cursorY = 0; break; default: setChar(c, cursorX, cursorY, BLACK); updateDisplay(); cursorX += 6; // Increment cursor break; } // Manage cursor if (cursorX >= (LCD_WIDTH - 4)) { // If the next char will be off screen... cursorX = 0; // ... reset x to 0... cursorY += 8; // ...and increment to next line. if (cursorY >= (LCD_HEIGHT - 7)) { // If the next line takes us off screen... cursorY = 0; // ...go back to the top. } } } } /* This function serves as a fun demo of the graphics driver functions below. */ void lcdFunTime() { clearDisplay(WHITE); // Begin by clearing the display randomSeed(analogRead(A0)); /* setPixel Example */ const int pixelCount = 100; for (int i=0; i=0; i-=5) { analogWrite(blPin, i); // blPin is ocnnected to BL LED delay(20); } for (int i=0; i<256; i+=5) { analogWrite(blPin, i); delay(20); } } /* setRect Example */ clearDisplay(WHITE); // Start fresh // setRect takes six parameters (x0, y0, x1, y0, fill, bw) // x0, y0, x1, and y0 are the two diagonal corner coordinates // fill is a boolean, which determines if the rectangle is // filled in. bw determines the color 0=white, 1=black. for (int x=0; x= 0) && (x < LCD_WIDTH) && (y >= 0) && (y < LCD_HEIGHT)) { byte shift = y % 8; if (bw) // If black, set the bit. displayMap[x + (y/8)*LCD_WIDTH] |= 1< dy) { int fraction = dy - (dx >> 1); while (x0 != x1) { if (fraction >= 0) { y0 += stepy; fraction -= dx; } x0 += stepx; fraction += dy; setPixel(x0, y0, bw); } } else { int fraction = dx - (dy >> 1); while (y0 != y1) { if (fraction >= 0) { x0 += stepx; fraction -= dy; } y0 += stepy; fraction += dx; setPixel(x0, y0, bw); } } } // setRect will draw a rectangle from x0,y0 top-left corner to // a x1,y1 bottom-right corner. Can be filled with the fill // parameter, and colored with bw. // This function was grabbed from the SparkFun ColorLCDShield // library. void setRect(int x0, int y0, int x1, int y1, boolean fill, boolean bw) { // check if the rectangle is to be filled if (fill == 1) { int xDiff; if(x0 > x1) xDiff = x0 - x1; //Find the difference between the x vars else xDiff = x1 - x0; while(xDiff > 0) { setLine(x0, y0, x0, y1, bw); if(x0 > x1) x0--; else x0++; xDiff--; } } else { // best way to draw an unfilled rectangle is to draw four lines setLine(x0, y0, x1, y0, bw); setLine(x0, y1, x1, y1, bw); setLine(x0, y0, x0, y1, bw); setLine(x1, y0, x1, y1, bw); } } // setCircle draws a circle centered around x0,y0 with a defined // radius. The circle can be black or white. And have a line // thickness ranging from 1 to the radius of the circle. // This function was grabbed from the SparkFun ColorLCDShield // library. void setCircle (int x0, int y0, int radius, boolean bw, int lineThickness) { for(int r = 0; r < lineThickness; r++) { int f = 1 - radius; int ddF_x = 0; int ddF_y = -2 * radius; int x = 0; int y = radius; setPixel(x0, y0 + radius, bw); setPixel(x0, y0 - radius, bw); setPixel(x0 + radius, y0, bw); setPixel(x0 - radius, y0, bw); while(x < y) { if(f >= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x + 1; setPixel(x0 + x, y0 + y, bw); setPixel(x0 - x, y0 + y, bw); setPixel(x0 + x, y0 - y, bw); setPixel(x0 - x, y0 - y, bw); setPixel(x0 + y, y0 + x, bw); setPixel(x0 - y, y0 + x, bw); setPixel(x0 + y, y0 - x, bw); setPixel(x0 - y, y0 - x, bw); } radius--; } } // This function will draw a char (defined in the ASCII table // near the beginning of this sketch) at a defined x and y). // The color can be either black (1) or white (0). void setChar(char character, int x, int y, boolean bw) { byte column; // temp byte to store character's column bitmap for (int i=0; i<5; i++) // 5 columns (x) per character { column = ASCII[character - 0x20][i]; for (int j=0; j<8; j++) // 8 rows (y) per character { if (column & (0x01 << j)) // test bits to set pixels setPixel(x+i, y+j, bw); else setPixel(x+i, y+j, !bw); } } } // setStr draws a string of characters, calling setChar with // progressive coordinates until it's done. // This function was grabbed from the SparkFun ColorLCDShield // library. void setStr(char * dString, int x, int y, boolean bw) { while (*dString != 0x00) // loop until null terminator { setChar(*dString++, x, y, bw); x+=5; for (int i=y; i (LCD_WIDTH - 5)) // Enables wrap around { x = 0; y += 8; } } } // This function will draw an array over the screen. (For now) the // array must be the same size as the screen, covering the entirety // of the display. void setBitmap(char * bitArray) { for (int i=0; i<(LCD_WIDTH * LCD_HEIGHT / 8); i++) displayMap[i] = bitArray[i]; } // This function clears the entire display either white (0) or // black (1). // The screen won't actually clear until you call updateDisplay()! void clearDisplay(boolean bw) { for (int i=0; i<(LCD_WIDTH * LCD_HEIGHT / 8); i++) { if (bw) displayMap[i] = 0xFF; else displayMap[i] = 0; } } // Helpful function to directly command the LCD to go to a // specific x,y coordinate. void gotoXY(int x, int y) { LCDWrite(0, 0x80 | x); // Column. LCDWrite(0, 0x40 | y); // Row. ? } // This will actually draw on the display, whatever is currently // in the displayMap array. void updateDisplay() { gotoXY(0, 0); for (int i=0; i < (LCD_WIDTH * LCD_HEIGHT / 8); i++) { LCDWrite(LCD_DATA, displayMap[i]); } } // Set contrast can set the LCD Vop to a value between 0 and 127. // 40-60 is usually a pretty good range. void setContrast(byte contrast) { LCDWrite(LCD_COMMAND, 0x21); //Tell LCD that extended commands follow LCDWrite(LCD_COMMAND, 0x80 | contrast); //Set LCD Vop (Contrast): Try 0xB1(good @ 3.3V) or 0xBF if your display is too dark LCDWrite(LCD_COMMAND, 0x20); //Set display mode } /* There are two ways to do this. Either through direct commands to the display, or by swapping each bit in the displayMap array. We'll leave both methods here, comment one or the other out if you please. */ void invertDisplay() { /* Direct LCD Command option LCDWrite(LCD_COMMAND, 0x20); //Tell LCD that extended commands follow LCDWrite(LCD_COMMAND, 0x08 | 0x05); //Set LCD Vop (Contrast): Try 0xB1(good @ 3.3V) or 0xBF if your display is too dark LCDWrite(LCD_COMMAND, 0x20); //Set display mode */ /* Indirect, swap bits in displayMap option: */ for (int i=0; i < (LCD_WIDTH * LCD_HEIGHT / 8); i++) { displayMap[i] = ~displayMap[i] & 0xFF; } updateDisplay(); } // There are two memory banks in the LCD, data/RAM and commands. // This function sets the DC pin high or low depending, and then // sends the data byte void LCDWrite(byte data_or_command, byte data) { //Tell the LCD that we are writing either to data or a command digitalWrite(dcPin, data_or_command); //Send the data digitalWrite(scePin, LOW); SPI.transfer(data); //shiftOut(sdinPin, sclkPin, MSBFIRST, data); digitalWrite(scePin, HIGH); } //This sends the magical commands to the PCD8544 void lcdBegin(void) { //Configure control pins pinMode(scePin, OUTPUT); pinMode(rstPin, OUTPUT); pinMode(dcPin, OUTPUT); pinMode(sdinPin, OUTPUT); pinMode(sclkPin, OUTPUT); pinMode(blPin, OUTPUT); analogWrite(blPin, 255); SPI.begin(); SPI.setDataMode(SPI_MODE0); SPI.setBitOrder(MSBFIRST); //Reset the LCD to a known state digitalWrite(rstPin, LOW); digitalWrite(rstPin, HIGH); LCDWrite(LCD_COMMAND, 0x21); //Tell LCD extended commands follow LCDWrite(LCD_COMMAND, 0xB0); //Set LCD Vop (Contrast) LCDWrite(LCD_COMMAND, 0x04); //Set Temp coefficent LCDWrite(LCD_COMMAND, 0x14); //LCD bias mode 1:48 (try 0x13) //We must send 0x20 before modifying the display control mode LCDWrite(LCD_COMMAND, 0x20); LCDWrite(LCD_COMMAND, 0x0C); //Set display control, normal mode. }