

HDSP – 2000 ALPHA DRIVER BOARD
PROJECT MANUAL DOC REF: RKD1

RUSSELL KELLY

RKELECTRONICS.ORG

RUSSELL.KELLY@RKELECTRONICS.ORG

VERSION 1

AUGUST 28, 2018

1

PREFACE

First of all thank you for downloading this project, I hope that you find it useful, educa5onal or just a

good read. Like most of my projects, they are designed and wri7en such that most hobbyist electronics

enthusiasts can build the designs using common components and materials.

Where best possible, low cost, easily obtainable components are used within the design. Drawings of

electrical schema5cs, circuit board art work and component placement diagrams are provided with this

report.

For more informa5on, please visit my website at;

 www.rkelectronics.org

 I would also like to thank;

 John Woolley – Project Commissioner

2

CONTENTS

Preface .. 1

Design Brief ... 3

Assump5ons .. 3

Safety .. 3

Project Requirements .. 4

User requirements ... 4

Priciple of Opera5on.. 5

How to use .. 5

PCB Board Connec5ons ... 5

How the circuit works .. 6

Printed Circuit Board ... 7

General Arrangement .. 7

Component Side Copper .. 8

Bo7om Side Copper ... 9

Component Side Mask ... 10

Bo7om Side Mask .. 11

Schema5c Diagram .. 12

PIC Source Code .. 13

Main Program .. 13

Ini5al_SeDngs_Special_Func5on_Registers ... 14

RK_ASCII_Font ... 15

RS232_Rou5nes ... 18

SoEware_Serial ... 19

Timer_Interrupt_and_Setup .. 20

Transla5on ... 22

Variable_Values ... 23

Bill of Materials ... 24

3

DESIGN BRIEF

To design a display driver board to host the Hewle7 Packard HDSP-2000 series of alpha-numeric

displays. The board will provide the circuitry for two, four character HDSP-2000 displays. The

communica5on to the display driver boards will be in the form of RS232.

Only eight characters are visible per data packet.

ASSUMPTIONS

This project assumes that you have basic knowledge of electronics and have worked with high current

low voltage circuits. This report also assumes that you have some experience with using PIC

microcontrollers.

SAFETY

This project is designed to operate from a 5v power supply. The HDSP-2000 displays consume

approximately 1A. Therefore, suitable fusing is required in the event of a short circuit.

Please note that I do not take any responsibility for any loss, damage or harm caused by the building

of this project. This project book comes ‘as is’. I have built this project and can confirm it works, and

to the best of my ability is safe to use.

4

PROJECT REQUIREMENTS

USER REQUIREMENTS

No. Descrip2on Influence

UREQ1 The control circuit SHALL operate from a 5v DC power supply [ba7ery or

power circuit].

Power

UREQ2 The display driver board SHALL contain suitable column driver circuits to

adequately power each of the HDSP-2000 displays.

Output / Control

UREQ3 Communica5on SHALL be via RS232

• Set baud rate of 1200 kbps,

• Use of carriage return to denote end of data packet,

• Use of standard ASCII to determine which characters to display,

Input / Control

UREQ4 The driver board SHALL receive a single string of eight characters

followed by carriage return (ASCII 13)

Output

UREQ5 The driver board SHALL accept RS232 of the +5v, +12v, +/-5v and +/-12v

standard.

Input

UREQ6 The character data shall be loaded into the driver as part of the

firmware.

Control

5

PRICIPLE OF OPERATION

HOW TO USE

The display driver controls the HDSP-2000 displays to display upto eight characters. The characters to

display are sent to the driver IC via RS232. The RS232 must contain the following sequence of bytes.

Byte Number Description

1 Character 1 (Left most character on the display)

2 Character 2

3 Character 3

4 Character 4

5 Character 5

6 Character 6

7 Character 7

8 Character 8 (Right most character on the display)

9 Carriage Return (ASCII = 13)

It paramount that data transfer is not disturbed as there is no start of packet syncronisation byte. A

short delay of several milliseconds must be present post display power up before sending the first data

packet. This ensures syncronisation.

The BAUD rate is 1200 bits per second. No others are supported.

For RS232 to HDSP-2000 driver for characters, ensure that PIC firmware RK0082a is used.

PCB BOARD CONNECTIONS

There are a number of connec5ons marked on the board as shown below. Each connec5on is described

in the table below.

6

Pin No. Connection Name Useage Description

1 5V Used Power Supply

2 GND Used Power Supply Ground

3 RX Used RS232 Receive 0-5V OR +/-5V

4 RXHV Used RS232 Receive 0-12V OR +/-12V

5 TX Not Used RS232 Transmit (from driver board)

6 GND Used Power Supply / Comms Ground

7 GND Used Power / Comms Supply Ground

8 DI Not Used HDSP Data In

9 CLK Not Used HDSP Clock

10 CS Not Used SPI Chip Select (active low)

11 AN0 Not Used Analogue input 0

12 AN1 Not Used Analogue input 1

Inlcuded on the driver board is the six pin Microchip In-Circuit Serial Programming connection. This

allows connection of a PIC programming tool (for example, PICKITs 2 – 4) to be connected to program

the PIC while in circuit.

HOW THE CIRCUIT WORKS

The driver IC performs three key functions.

The first is the strobing of of the HDSP-2000 columns. This is achieved by use of five PNP LED driver

transistors. The strobing rate is approximately 500 Hz, 100 Hz per dot matrix column. One column of

each character matrix is displayed at a time. For example, if column driver zero is active the first column

on all eight character matrixes is active.

The second function, which occurs between each column change is a 56 bit serial data stream which is

sent to the HDSP-2000 shift registers. This reloads the new column dot matrix information. All columns

are switched off during the shift register updates. Due to the ‘daisy chain’ connection between the two

HDSP-2000 displays this represents 28 bits per display.

The third function is to check the received RS232 data for a genuine packet of data. If the carriage return

is present on byte 9 then the data is cleared for translation. Translation cross references the received

ASCII codes to characters. The character dot matirx data is in turn looked up from the onboard ASCII dot

matrix data array and arranged for transmission for the HDSP-2000 display.

7

PRINTED CIRCUIT BOARD

GENERAL ARRANGEMENT

8

COMPONENT SIDE COPPER

9

BOTTOM SIDE COPPER

10

COMPONENT SIDE MASK

11

BOTTOM SIDE MASK

12

 SCHEMATIC DIAGRAM

13

PIC SOURCE CODE

MAIN PROGRAM

'---

'-- This is the main program code. It contains the list of sub-rou5nes to

'-- follow and in which order. This program also contains the main interrupt

'-- sub-rou5ne.

'--

'-- Main_Program

'-- Program author: Russell Kelly

'-- Date: 01.07.2018

'-- Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver

'-- Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082a

'--

'-- OPEN SOURCE PROJECT

'---

program Main_Program

'State other module dependacies

include RK_ASCII_Font

include Ini5al_SeDngs_Special_Func5on_Registers

include Timer_Interrupt_and_Setup

include RS232_Rou5nes

include variable_values

'Interrupt sub rou5ne

Sub procedure interrupt

 5mer_interrupt 'call 5mer interrupt rou5ne for column strobing

end sub

Main: 'Sub-rou5ne calls that should be run once on startup.

'set up special func5on registers

Setup_SFRs

'setup variable ini5al values

set_ini5al_variable_values

'Setup 5mer 1 registers and interrupt

InitTimer1

'Setup EUART; 1200 baud, 8 bits, 1 stop bit, parity = 0 and ASYNC.

UART1_Init(1200)

Loop_Rou5nes: 'Rou5nes that are executed repeatedly as part of the main loop

Check_RS232

translate

'end of loop, repeat...

goto Loop_Rou5nes

end.

14

INITIAL_SETTINGS_SPECIAL_FUNCTION_REGISTERS

module Ini5al_SeDngs_Special_Func5on_Registers

'---

'-- This is a program module. It contains the code for seDng up the

'-- microcontrollers special func5on registers. This module shall be run at

'-- the beginning on power up / start up.

'--

'-- Module author: Russell Kelly

'-- Date: 01.07.2018

'-- Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver

'-- Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082a

'--

'-- OPEN SOURCE PROJECT

'---

sub procedure Setup_SFRs

implements

sub procedure Setup_SFRs

osccon = %11100010 '8 MHz internal oscillator

osccon2 = 0 'oscillator circuit is off

osctune = 0 'PLL is turned off clock is now 8 MHz

Intcon = %11000000

intcon2 = %10000000

intcon3 = 0

trisa = 0 'Port a all outputs

trisb = %00100000 'Port B.5 is an input

trisc = 0 'Port c all outputs

wpua = 0

wpub = 0

ioca = 0

iocb = 0

ansel = 0 'all digital inputs

anselh = 0 'all digital inputs

slrcon = 0

ccp1con = 0

vrefcon0 = 0

adcon0 = 0 'adc disabled

adcon1 = 0

adcon2 = 0

cm1con0 = 0

cm2con0 = 0

cm2con1 = 0

srcon0 = 0

srcon1 = 0

end sub

end.

15

RK_ASCII_FONT

module RK_ASCII_Font

'---

'-- This is a program module. It contains the constant RK_ASCII. RK_ASCII

'-- contains the binary data to reconstruct each character in the standard

'-- ASCII chart. This constant is global and stored as part of the program

'-- Flash memory.

'--

'-- Module author: Russell Kelly

'-- Date: 01.07.2018

'-- Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver

'-- Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082a

'--

'-- OPEN SOURCE PROJECT

'---

'GLCD FontName : RK_ASCII

'GLCD FontSize : 5 x 7

const RK_ASCII as byte[480] = (

 $00, $00, $00, $00, $00, ' Code for char

 $00, $00, $4F, $00, $00, ' Code for char !

 $00, $03, $00, $03, $00, ' Code for char "

 $14, $3E, $14, $3E, $14, ' Code for char #

 $24, $4A, $7F, $52, $24, ' Code for char $

 $23, $13, $08, $64, $62, ' Code for char %

 $26, $59, $59, $26, $50, ' Code for char &

 $00, $04, $03, $00, $00, ' Code for char '

 $3E, $41, $41, $00, $00, ' Code for char (

 $00, $00, $41, $41, $3E, ' Code for char)

 $00, $05, $02, $05, $00, ' Code for char *

 $08, $08, $3E, $08, $08, ' Code for char +

 $00, $40, $30, $00, $00, ' Code for char ,

 $08, $08, $08, $08, $08, ' Code for char -

 $00, $60, $60, $00, $00, ' Code for char .

 $20, $10, $08, $04, $02, ' Code for char /

 $3E, $51, $49, $45, $3E, ' Code for char 0

 $00, $42, $7F, $40, $00, ' Code for char 1

 $42, $61, $51, $49, $46, ' Code for char 2

 $22, $41, $49, $55, $22, ' Code for char 3

 $08, $0C, $0A, $7F, $08, ' Code for char 4

 $4F, $49, $49, $49, $31, ' Code for char 5

 $3E, $49, $49, $49, $32, ' Code for char 6

 $03, $01, $71, $09, $07, ' Code for char 7

 $36, $49, $49, $49, $36, ' Code for char 8

16

 $26, $49, $49, $49, $3E, ' Code for char 9

 $00, $00, $36, $00, $00, ' Code for char :

 $00, $40, $36, $00, $00, ' Code for char ;

 $08, $14, $22, $00, $00, ' Code for char <

 $14, $14, $14, $14, $14, ' Code for char =

 $00, $00, $22, $14, $08, ' Code for char >

 $02, $01, $51, $09, $06, ' Code for char ?

 $3E, $41, $19, $25, $3E, ' Code for char @

 $7C, $0A, $09, $0A, $7C, ' Code for char A

 $7F, $49, $49, $49, $36, ' Code for char B

 $3E, $41, $41, $41, $22, ' Code for char C

 $7F, $41, $41, $41, $3E, ' Code for char D

 $7F, $49, $49, $41, $41, ' Code for char E

 $7F, $09, $09, $01, $01, ' Code for char F

 $3E, $41, $41, $49, $79, ' Code for char G

 $7F, $08, $08, $08, $7F, ' Code for char H

 $00, $41, $7F, $41, $00, ' Code for char I

 $20, $41, $41, $3F, $01, ' Code for char J

 $7F, $08, $14, $22, $41, ' Code for char K

 $7F, $40, $40, $40, $40, ' Code for char L

 $7F, $04, $08, $04, $7F, ' Code for char M

 $7F, $04, $08, $10, $7F, ' Code for char N

 $3E, $41, $41, $41, $3E, ' Code for char O

 $7F, $09, $09, $09, $06, ' Code for char P

 $3E, $41, $41, $21, $5E, ' Code for char Q

 $7F, $09, $19, $29, $46, ' Code for char R

 $26, $49, $49, $49, $32, ' Code for char S

 $01, $01, $7F, $01, $01, ' Code for char T

 $3F, $40, $40, $40, $3F, ' Code for char U

 $1F, $20, $40, $20, $1F, ' Code for char V

 $7F, $10, $08, $10, $7F, ' Code for char W

 $63, $14, $08, $14, $63, ' Code for char X

 $07, $08, $70, $08, $07, ' Code for char Y

 $61, $51, $49, $45, $43, ' Code for char Z

 $7F, $41, $41, $00, $00, ' Code for char [

 $02, $04, $08, $10, $20, ' Code for char BackSlash

 $00, $00, $41, $41, $7F, ' Code for char]

 $04, $02, $01, $02, $04, ' Code for char ^

 $40, $40, $40, $40, $40, ' Code for char _

 $00, $01, $02, $00, $00, ' Code for char `

 $38, $44, $48, $3C, $40, ' Code for char a

 $7C, $50, $50, $50, $20, ' Code for char b

 $38, $44, $44, $44, $28, ' Code for char c

 $20, $50, $50, $50, $7C, ' Code for char d

 $38, $54, $54, $54, $58, ' Code for char e

 $78, $14, $14, $14, $04, ' Code for char f

 $18, $54, $54, $54, $78, ' Code for char g

 $7C, $10, $10, $10, $60, ' Code for char h

17

 $00, $00, $74, $00, $00, ' Code for char i

 $20, $40, $34, $00, $00, ' Code for char j

 $7C, $10, $28, $44, $00, ' Code for char k

 $00, $00, $7C, $00, $00, ' Code for char l

 $78, $04, $18, $04, $78, ' Code for char m

 $7C, $08, $04, $08, $70, ' Code for char n

 $38, $44, $44, $44, $38, ' Code for char o

 $7C, $14, $14, $14, $1C, ' Code for char p

 $1C, $14, $14, $7C, $20, ' Code for char q

 $7C, $08, $04, $04, $08, ' Code for char r

 $48, $54, $54, $54, $24, ' Code for char s

 $3C, $48, $48, $40, $00, ' Code for char t

 $3C, $40, $40, $3C, $40, ' Code for char u

 $1C, $20, $40, $20, $1C, ' Code for char v

 $3C, $40, $30, $40, $3C, ' Code for char w

 $44, $44, $38, $44, $44, ' Code for char x

 $0C, $50, $50, $50, $3C, ' Code for char y

 $44, $64, $54, $4C, $44, ' Code for char z

 $08, $36, $41, $41, $00, ' Code for char {

 $00, $00, $7F, $00, $00, ' Code for char |

 $00, $41, $41, $36, $08, ' Code for char }

 $08, $04, $08, $10, $08, ' Code for char ~

 $7F, $7F, $7F, $7F, $7F ' Code for char h

)

implements

'nothing is implented its just the ASCII constants in RK font.

end.

18

RS232_ROUTINES

module RS232_Rou5nes

'---

'-- This is a program module. This module contains the code for checking the

'-- UART and placing received data into the rx_data_file where each of the

'-- characters are stored for transla5on. This code also checks for the

'—carriage return for end of line. Transla5on flag is NOT set to TRUE if the

'—carriage return character is not present in byte 9.

'-- data forat is;

'-- char 0, char 1, char 2, char 3, char 4, char 5, char 6, char 7, char 8, 13

'--

'-- Module author: Russell Kelly

'-- Date: 01.07.2018

'-- Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver

'-- Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082a

'--

'-- OPEN SOURCE PROJECT

'---

'Global variables

sub procedure check_RS232

dim rx_counter as byte

dim rx_data_file as byte[9]

dim translate_flag as byte

implements

'Retrive data, load into rx data file and set the translate flag if complete

sub procedure check_RS232

if (UART1_Data_Ready() = 1) then 'check to see if data has been recieved

 rx_data_file[rx_counter] = rcreg 'load rs232 shiE register into rx_data_file

 inc(rx_counter) 'increment rx_counter

 if rx_counter > 8 then 'set rx_counter limits

 rx_counter = 0

 end if

 if rx_data_file[8] = 13 then 'check for carriage return at the end of the string

 translate_flag = 1 'if carriage return is present 8 byte packet is good

 end if

end if

end sub

end.

19

SOFTWARE_SERIAL

module SoEware_Serial

'---

'-- This is a program module. This module contains the code for sending serial

'-- data to the HDSP-2000 displays. Due to the size of the shiE registers

'-- the serial protocol is executed in soEware not the na5ve SPI module of

'-- PIC.

'--

'-- Module author: Russell Kelly

'-- Date: 01.07.2018

'-- Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver

'-- Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082

'--

'-- OPEN SOURCE PROJECT

'---

'Global variables and dependancies

sub procedure shiE_register_send(dim input_data as byte)

dim x as byte

implements

dim x as byte

sub procedure shiE_register_Send(dim input_data as byte)

'clock is on latb.6

'data is on latb.4

 'send 7 bits from the input data

 for x = 6 to 0 step (-1)

 latb.4 = input_data.x 'put a bit onto lata.1 - data

 latb.6 = 1 'raise clock signal to high

 delay_us(1) 'wait 1 µS

 latb.6 = 0 'lower clock signal to low

 delay_us(10) 'wait 10 µS

 next x

end sub

end.

20

TIMER_INTERRUPT_AND_SETUP

module Timer_Interrupt_and_Setup

'---

'-- This is a program module. It contains the code for seDng up the

'-- 5mer interrupt rou5ne. The interrupt rou5ne sets a flag to inform

'-- the module 'Update_display' to send the next series of column data.

'--

'-- Module author: Russell Kelly

'-- Date: 01.07.2018

'-- Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver

'-- Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082

'--

'-- OPEN SOURCE PROJECT

'---

include transla5on

include soEware_serial

include rs232_Rou5nes

'Global declara5ons

sub procedure InitTimer1

sub procedure 5mer_interrupt

dim characters as byte

dim column_pointer as byte

dim shiE_register_data as byte

implements

'Setup of 5mer 1, to interrupt every 2 mS.

sub procedure InitTimer1()

 'one interrupt every 2 ms. Display frequency is approx. 500 Hz.

 T1CON = 0x01

 TMR1IF_bit = 0

 TMR1H = 0xE4

 TMR1L = 0x60

 TMR1IE_bit = 1

 INTCON = 0xC0

end sub

'Timer 1 interrupt sub-rou5ne.

21

sub procedure 5mer_interrupt

 if (TMR1IF_bit) then '5mer 1 has overflowed

 TMR1IF_bit = 0 'reset interrupt flag

 TMR1H = 0xE4 'load 5mer 1 with preset

 TMR1L = 0x60

 'switch off the display

 latc = 255 'all portc outputs are TRUE, PNP drivers will be turned off

 'send 56 bit shiE register data last character first i.e. 7 - 0

 'most significant bit should be sent first.

 'clock is on lata.0

 'data is on lata.1

 'set up display data for transmission to the displays shiE register

 for characters = 7 to 0 step(-1)

 'load column data from dot_data 2D array based on character and pointer

 shiE_register_data = dot_data[characters][column_pointer]

 'Load column data into the shiE register of the display

 shiE_register_Send(shiE_register_data)

 next characters

 'switch on the approperaite columm driver, linked to column pointer

 'Latc outputs are the NOT of the selected column due to the use of

 'PNP drivers

 select case column_pointer

 case 0 latc = NOT %00000001

 case 1 latc = NOT %00000010

 case 2 latc = NOT %00000100

 case 3 latc = NOT %00001000

 case 4 latc = NOT %00010000

 end select

 'increment the column pointer ready for the next interrupt

 inc(column_pointer)

 'set column pointer range

 if column_pointer = 5 then

 column_pointer = 0

 end if

 end if

end sub

end.

22

TRANSLATION

module Transla5on

'---

'-- This is a program module. This module contains the code for transla5ng

'-- the recieved ASCII codes into the required 5 x 7 dot matrix pa7erns.

'-- The code also determines the start address to of each required character

'-- pa7ern and loads the required dot matrix pa7ern into the display buffer

'-- Module author: Russell Kelly Date: 01.07.2018 Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver, Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082 OPEN SOURCE PROJECT

'Global variables and dependancies

include rs232_rou5nes

include RK_ASCII_Font

'This module takes the ASCII from rx_buffer and loads the ASCII font matrix

'into the display array.

'global declara5ons

sub procedure translate

dim ascii_start_address as word[8]

dim character as byte

dim column as byte

dim start_address as word

dim dot_data as byte[8][5]

dim rk_font_address as word

implements

sub procedure translate

 'check for translate flag from RS232_rou5nes

 if translate_flag = 1 then '8 genuine characters available

 translate_flag = 0 'reset flag

 'remove carriage return so that this process does not repeat

 rx_data_file[8] = 0

 'obtain start address for each of the eight characters

 'the start address relates to the address in the ASCII character

 'constant located in RK_ASCII_Font module.

 For character = 0 to 7 step (1)

 'find the start address within RK_Font constant for each char.

 start_address = (rx_data_file[character] - 32) * 5

 For column = 0 to 4 step (1)

 'iden5fy the RK_Font address for each column

 rk_font_address = start_address + column

 'load RK_Font coloumn data into 2D array buffer

 dot_data[character][column] = RK_ASCII[rk_font_address]

 next column

 next character

 end if

end sub

end.

23

VARIABLE_VALUES

module Variable_Values

'---

'-- This is a program module. This module sets the ini5al values for all

'-- the variables used as part of this program.

'-- Module author: Russell Kelly

'-- Date: 01.07.2018 Project sponser: John Woolley

'-- Project 5tle: HDSP-2000 Display Driver

'-- Microcontroller: PIC18F14k22

'-- RK IC Number: RK0082

'-- OPEN SOURCE PROJECT

'Global variables and dependacies

include RK_ASCII_Font

include Ini5al_SeDngs_Special_Func5on_Registers

include Timer_Interrupt_and_Setup

include RS232_Rou5nes

include update_display

include soEware_serial

include transla5on

dim j_ as byte

dim i_ as byte

sub procedure set_ini5al_variable_values

implements

sub procedure set_ini5al_variable_values

 'ini5al values for all variables upon startup.

 character = 0

 column = 0

 rk_font_address = 0

 rx_counter = 0

 translate_flag = 0

 characters = 0

 column_pointer = 0

 shiE_register_data = 0

 latc = 0

 latb = 0

 lata = 0

 x = 0

 for j_ = 0 to 8 step (1)

 rx_data_file[j_] = 0

 next j_

 for i_ = 0 to 7 step(1)

 for j_ = 0 to 4 step(1)

 dot_data[i_][j_] = 0

 next j_

 next i_

end sub

end.

24

BILL OF MATERIALS

Reference Value Footprint

Dis1 HDSP Russ_Layouts:HDSP2000

Dis2 HDSP Russ_Layouts:HDSP2000

R6 2K2 Resistors_SMD:R_1206_HandSoldering

R1 470 Resistors_SMD:R_1206_HandSoldering

R7 2K2 Resistors_SMD:R_1206_HandSoldering

R2 470 Resistors_SMD:R_1206_HandSoldering

R8 2K2 Resistors_SMD:R_1206_HandSoldering

R3 470 Resistors_SMD:R_1206_HandSoldering

R9 2K2 Resistors_SMD:R_1206_HandSoldering

R4 470 Resistors_SMD:R_1206_HandSoldering

R10 2K2 Resistors_SMD:R_1206_HandSoldering

R5 470 Resistors_SMD:R_1206_HandSoldering

U1 18F14k22 Housings_DIP:DIP-20_W7.62mm_LongPads

C6 100nF Capacitors_SMD:C_1206_HandSoldering

C5 100nF Capacitors_SMD:C_1206_HandSoldering

C4 100nF Capacitors_SMD:C_1206_HandSoldering

C3 10µF Capacitors_ThroughHole:CP_Radial_D5.0mm_P2.50mm

D2 4001 Diodes_SMD:D_1206

Q1 BD140 TO_SOT_Packages_THT:TO-126_Vertical

Q2 BD140 TO_SOT_Packages_THT:TO-126_Vertical

Q3 BD140 TO_SOT_Packages_THT:TO-126_Vertical

Q4 BD140 TO_SOT_Packages_THT:TO-126_Vertical

Q5 BD140 TO_SOT_Packages_THT:TO-126_Vertical

R11 10K Resistors_SMD:R_1206_HandSoldering

R12 6K8 Resistors_SMD:R_1206_HandSoldering

P1 EXTERNAL CONNECTOR Pin_Headers:Pin_Header_Straight_1x12_Pitch2.54mm

R13 100K Resistors_SMD:R_1206_HandSoldering

R14 100K Resistors_SMD:R_1206_HandSoldering

P2 ICSP Pin_Headers:Pin_Header_Straight_1x06_Pitch2.54mm

