#include #define NUM_LEDS 60 //The amount of LEDs in the setup #define LED_PIN 8 //The pin that controls the LEDs #define ANALOG_READ 0 //The pin that we read sensor values form //Confirmed microphone low value, and max value #define MIC_LOW 10 #define MIC_HIGH 500 /** Other macros */ //How many previous sensor values effects the operating average? #define AVGLEN 10 //How many previous sensor values decides if we are on a peak/HIGH (e.g. in a song) #define LONG_SECTOR 5 //Mneumonics #define HIGH 3 #define NORMAL 2 //How long do we keep the "current average" sound, before restarting the measuring #define MSECS 1500 #define CYCLES MSECS / DELAY /*Sometimes readings are wrong or strange. How much is a reading allowed to deviate from the average to not be discarded? **/ #define DEV_THRESH 0.8 //Arduino loop delay #define DELAY 1 float fscale( float originalMin, float originalMax, float newBegin, float newEnd, float inputValue, float curve); void insert(int val, int *avgs, int len); int compute_average(int *avgs, int len); void visualize_music(); //How many LEDs to we display int curshow = NUM_LEDS; /*Not really used yet. Thought to be able to switch between sound reactive mode, and general gradient pulsing/static color*/ int mode = 0; //Showing different colors based on the mode. int songmode = NORMAL; //Average sound measurement the last CYCLES unsigned long song_avg; //The amount of iterations since the song_avg was reset int iter = 0; //The speed the LEDs fade to black if not relit float fade_scale = 1.2; //Led array CRGB leds[NUM_LEDS]; /*Short sound avg used to "normalize" the input values. We use the short average instead of using the sensor input directly */ int avgs[AVGLEN] = {-1}; //Longer sound avg int long_avg[LONG_SECTOR] = {-1}; //Keeping track how often, and how long times we hit a certain mode struct time_keeping { unsigned long times_start; short times; }; //How much to increment or decrement each color every cycle struct color { int r; int g; int b; }; struct time_keeping high; struct color Color; void setup() { Serial.begin(9600); //Set all lights to make sure all are working as expected FastLED.addLeds(leds, NUM_LEDS); for (int i = 0; i < NUM_LEDS; i++) leds[i] = CRGB(0, 0, 255); FastLED.show(); delay(1000); //bootstrap average with some low values for (int i = 0; i < AVGLEN; i++) { insert(250, avgs, AVGLEN); } //Initial values high.times = 0; high.times_start = millis(); Color.r = 0; Color.g = 1; Color.b = 0; } /*With this we can change the mode if we want to implement a general lamp feature, with for instance general pulsing. Maybe if the sound is low for a while? */ void loop() { switch(mode) { case 0: visualize_music(); break; default: break; } delay(DELAY); // delay in between reads for stability } /**Funtion to check if the lamp should either enter a HIGH mode, or revert to NORMAL if already in HIGH. If the sensors report values that are higher than 1.1 times the average values, and this has happened more than 30 times the last few milliseconds, it will enter HIGH mode. TODO: Not very well written, remove hardcoded values, and make it more reusable and configurable. */ void check_high(int avg) { if (avg > (song_avg/iter * 1.1)) { if (high.times != 0) { if (millis() - high.times_start > 200.0) { high.times = 0; songmode = NORMAL; } else { high.times_start = millis(); high.times++; } } else { high.times++; high.times_start = millis(); } } if (high.times > 30 && millis() - high.times_start < 50.0) songmode = HIGH; else if (millis() - high.times_start > 200) { high.times = 0; songmode = NORMAL; } } //Main function for visualizing the sounds in the lamp void visualize_music() { int sensor_value, mapped, avg, longavg; //Actual sensor value sensor_value = analogRead(ANALOG_READ); //If 0, discard immediately. Probably not right and save CPU. if (sensor_value == 0) return; //Discard readings that deviates too much from the past avg. mapped = (float)fscale(MIC_LOW, MIC_HIGH, MIC_LOW, (float)MIC_HIGH, (float)sensor_value, 2.0); avg = compute_average(avgs, AVGLEN); if (((avg - mapped) > avg*DEV_THRESH)) //|| ((avg - mapped) < -avg*DEV_THRESH)) return; //Insert new avg. values insert(mapped, avgs, AVGLEN); insert(avg, long_avg, LONG_SECTOR); //Compute the "song average" sensor value song_avg += avg; iter++; if (iter > CYCLES) { song_avg = song_avg / iter; iter = 1; } longavg = compute_average(long_avg, LONG_SECTOR); //Check if we enter HIGH mode check_high(longavg); if (songmode == HIGH) { fade_scale = 3; Color.r = 8; Color.g = 1; Color.b = -2; } else if (songmode == NORMAL) { fade_scale = 3; Color.r = -1; Color.b = 6; Color.g = -2; } //Decides how many of the LEDs will be lit curshow = fscale(MIC_LOW, MIC_HIGH, 0.0, (float)NUM_LEDS, (float)avg, -1); /*Set the different leds. Control for too high and too low values. Fun thing to try: Dont account for overflow in one direction, some interesting light effects appear! */ for (int i = 0; i < NUM_LEDS; i++) //The leds we want to show if (i < curshow) { if (leds[i].r + Color.r > 255) leds[i].r = 255; else if (leds[i].r + Color.r < 0) leds[i].r = 0; else leds[i].r = leds[i].r + Color.r; if (leds[i].g + Color.g > 255) leds[i].g = 255; else if (leds[i].g + Color.g < 0) leds[i].g = 0; else leds[i].g = leds[i].g + Color.g; if (leds[i].b + Color.b > 255) leds[i].b = 255; else if (leds[i].b + Color.b < 0) leds[i].b = 0; else leds[i].b = leds[i].b + Color.b; //All the other LEDs begin their fading journey to eventual total darkness } else { leds[i] = CRGB(leds[i].r/fade_scale, leds[i].g/fade_scale, leds[i].b/fade_scale); } FastLED.show(); } //Compute average of a int array, given the starting pointer and the length int compute_average(int *avgs, int len) { int sum = 0; for (int i = 0; i < len; i++) sum += avgs[i]; return (int)(sum / len); } //Insert a value into an array, and shift it down removing //the first value if array already full void insert(int val, int *avgs, int len) { for (int i = 0; i < len; i++) { if (avgs[i] == -1) { avgs[i] = val; return; } } for (int i = 1; i < len; i++) { avgs[i - 1] = avgs[i]; } avgs[len - 1] = val; } //Basically map, but with a curve on the scale (can be non-uniform). float fscale( float originalMin, float originalMax, float newBegin, float newEnd, float inputValue, float curve){ float OriginalRange = 0; float NewRange = 0; float zeroRefCurVal = 0; float normalizedCurVal = 0; float rangedValue = 0; boolean invFlag = 0; // condition curve parameter // limit range if (curve > 10) curve = 10; if (curve < -10) curve = -10; curve = (curve * -.1) ; // - invert and scale - this seems more intuitive - postive numbers give more weight to high end on output curve = pow(10, curve); // convert linear scale into lograthimic exponent for other pow function // Check for out of range inputValues if (inputValue < originalMin) { inputValue = originalMin; } if (inputValue > originalMax) { inputValue = originalMax; } // Zero Refference the values OriginalRange = originalMax - originalMin; if (newEnd > newBegin){ NewRange = newEnd - newBegin; } else { NewRange = newBegin - newEnd; invFlag = 1; } zeroRefCurVal = inputValue - originalMin; normalizedCurVal = zeroRefCurVal / OriginalRange; // normalize to 0 - 1 float // Check for originalMin > originalMax - the math for all other cases i.e. negative numbers seems to work out fine if (originalMin > originalMax ) { return 0; } if (invFlag == 0){ rangedValue = (pow(normalizedCurVal, curve) * NewRange) + newBegin; } else // invert the ranges { rangedValue = newBegin - (pow(normalizedCurVal, curve) * NewRange); } return rangedValue; }