
Using an I2C LCD with the
Arduino Wire Library

Scope and Audience

• This document gives a limited introduction into the use of I2C
communications with the Arduino.

– Specifically Single Master to single Slave, 7bit addressing, 100Kbps bus speed
using the Arduino Wire Library with low to medium data signalling rates.

• It is targeted at the amateur electronics/maker hobbyist.

• Some rudimentary knowledge of electronics and software development
would be an advantage when reading the following content.

• It is not intended to be a definitive guide, more to give an outline and help
the hobbyist create projects using I2C devices (specifically controlling an
I2C LCD with PCF8574 in this case).

– And more importantly to dispel some myths and feel confident in its
application and use.

• The examples cited are to support the use of the ‘LiquidCrystal_I2C_PCF8574’
library and should be read in conjunction with the ‘Arduino I2C LCD Driver Library’
Instructable.

Note : The following information is true at the time of writing this document 14/10/15

What is I2C?

• ‘I2C’, ‘I squared C’, ‘I2C’ or IIC stands for Inter-Integrated Circuit bus.
• It is a standard created by Philips Semiconductors (now NXP

Semiconductor) in the early 1980s ‘originally developed as a control bus
for linking together microcontroller and peripheral ICs for Philips
consumer products’1 across short distances.

• In common parlance, sometimes known as ‘TWI’, Two Wire Interface by
other manufacturers to circumvent trademarking issues.
– There are however, some differences between I2C and TWI but are not in the

scope of this document.

• Bus speeds are2; Standard Mode 100 kbit/s (Sm), Fast-mode 400 kbit/s
(Fm), Fast-mode Plus 1 Mbit/s (Fm+), High-speed mode 3.4 Mbit/s (UFm)
– In general it is possible for different speed devices to occupy the same bus via

clock stretching. Though this is not in the scope of this document.

• Requires only two bus lines to operate;
– Serial Data Line : (SDA)
– Serial Clock Line : (SCL)

1. I2C Peripherals, Data Handbook IC12, 1996, Preface
2. UM10204, I2C-bus specification and user manual, Rev. 6 — 4 April 2014

What is I2C?

• Bus comprises Masters and Slaves. Only one master can ‘take
control’ of the bus at any one time.

• Each device connected to the bus is software addressable by a
unique address (7 or 10 bits in length) and simple master/slave
relationships exist at all times; masters can operate as master-
transmitters or as master-receivers.

• It is a true multi-master bus including collision detection and
arbitration to prevent data corruption if two or more masters
simultaneously initiate data transfer.

• Data transfer is bi-directional (not for UFm) 8 bit serial oriented.
• The number of ICs that can be connected to the same bus is limited

by the maximum bus capacitance 200pF – 400pF, depending upon
bus speed.

• Communications on the bus are serial, synchronously clocked via
the SCL line.

Definition of I2C Terms

3. UM10204, I2C-bus specification and user manual, Rev. 6 — 4 April 2014. § 3.1 Standard-mode, Fast-
mode and Fast-mode Plus I2C-bus protocols

To dispel any ambiguities a copy of the I2C definition of terms is given below3;

Arduino I2C Electrical Connections

See : https://www.arduino.cc/en/Reference/Wire

Board I2C / TWI pins

Uno, Ethernet A4 (SDA), A5 (SCL).
Note for R3 version of the Uno, these
pins are also brought out to the header
near AREF.

Mega2560 20 (SDA), 21 (SCL)

Leonardo 2 (SDA), 3 (SCL)

Due 20 (SDA), 21 (SCL), SDA1, SCL1

The following table identifies the I2C SDA/SCL pins for a range of Arduinos

https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/Wire

Electrical Inter-connections

• Multiple devices can be ‘hung’ off the SDA
and SCL lines much like ‘clothes on a washing
on a line.’

Vcc

Master Slave’1’ Slave’n’

Rp Rp

SDA

SCL

Electrical Inter-connections

• The output stage of the SDA and SCL lines are know
as Open Collector or Open Drain respectively which
are pulled high usually via an external source
resistance (Rp) connected to a positive supply
voltage (Vcc/Vdd).

SDA/SCL

Vcc

Gnd (0V)

Rp

Open Collector

SDA/SCL

Vdd

Gnd (Vss)

Rp

Open Drain

NPN Transistor N-Channel MOSFET

+ve supply

Rp

Gnd

Is the electrical
equivalent of

SDA/SCL

Switch

• Switch open SDA/SCL
Output = High or ‘1’

• Switch closed
SDA/SCL Output =
Low or ‘0’

Electrical Inter-connections

• There are limitations as to the minimum (limited by
supply voltage) and maximum (limited by bus
capacitance) size of the pull up resistors ‘Rp’. As a
pragmatic ‘rule of thumb’ try to keep this around 4K7Ω
– 10KΩ in total4.

• One important point to note is, if your project uses
many pre-manufactured I2C breakout modular slave
devices (I/O Expander, temp sensor, RTC, EEPROM etc.)
sharing the same bus and each board comes fitted with
its own pull up resistors you may find your I2C
communications stops working or becomes
intermittent.

4. UM10204, I2C-bus specification and user manual, Rev. 6 — 4 April 2014. § 7.1 Pull up resistor sizing

Electrical Inter-connections

• This is because you are effectively adding more parallel load to the
SDA/SCL bus lines. As below;

• The solution is to remove some of the extra pull up resistors.

Note : The Arduino Uno R3 does not come with Rp fitted to either SDA or SCL. Though AVR
Microcontrollers have internal pull ups which are automatically enabled by the Wire.begin()
function call. Important point to consider if connecting different supply technologies together.

Vcc

Master Slave’1’ Slave’n’

Rp Rp

SDA

SCL

Vcc

Rp

Vcc

Rp

Vcc

Rp Rp Rp Rp

In this diagram Rp is
now a quarter of its
original value ie. Rp/4

Interfacing between 5v – 3.3v Devices

• It is better to use a bi-directional level shifting circuit like that
shown below5 rather than connecting together different
technology devices as some internet blogs would suggest.

5. I2C bi-directional level shifter, http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
6. UM10204, I2C-bus specification and user manual, Rev. 6 — 4 April 2014. § 3.1.2 SDA and SCL logic levels

This is primarily because an I2C
compliant device running from 5v
requires a value of >3.5v (0.7 *
VDD)6 in order to recognise a Logic
‘High’ level at it’s I2C input.
Consequently you are taking a
gamble that the there is sufficient
sensitivity in the 5v device to
overcome the 200mv difference.
As a result you may observe non-
deterministic behaviour.

http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter

Interfacing between 5v – 3.3v Devices

7. I2C bi-directional level shifter, http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter

• If you really must connect different technologies directly together there is
a comprehensive explanation of the various design constraints/’pit falls’
you would need to consider at the following Arduino web page.

– See7 : http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter

• In general you will need to ensure/consider the following;

– For the device with the lowest supply, its output stage is capable of
driving a sufficiently high output such that a logic level ‘1’ is sensed at
the input of the highest supply device.

– For the device with the highest supply you will need to ensure the
output stage does not drive its logic level ‘1’ to a value that exceeds
the maximum DC characteristics of the input stage of the lowest
supply device.

• Further details are outside the scope of this document.

http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter

I2C Protocol

• This section will focus on the following I2C protocol signalling entities;

– Start : All I2C transactions begin with a start condition (S).

– Stop : All I2C transactions end with a stop condition (P).

– Data : Every data byte put on the SDA line must be eight bits long. Data is
transferred with the MSB first.
• Although the number of bytes that can be transmitted per transfer is unrestricted this document

will only consider single byte transfer.

– Ack : The acknowledge bit takes place after every byte transfer, allowing the
receiver to signal the transmitter that the byte was successfully received and
another byte may be sent

– Address : The first byte after the start condition, it comprises 7 address bits and
a single R/W bit sent MSB first on the SDA line.

• Note : The I2C specification provides for other protocol signalling entities,
however, for the purpose of outlining its use with the PCF8574, low to
medium signalling rates as typically observed when driving an LCD, to keep
things simple, only the five items above will be considered.

I2C Protocol

• Start and Stop conditions

• START and STOP conditions are always generated by the master.
• The bus is considered to be busy after the START condition.
• The bus is considered to be free again a certain elapsed time8 after the STOP condition.

8. UM10204, I2C-bus specification and user manual, Rev. 6 — 4 April 2014. § 6 Electrical specifications and timing
for I/O stages and bus lines. pp 48

I2C Protocol

• Data and Ack

• As mentioned earlier every data byte put on the SDA line must be eight bits long.
• Each byte is followed by an a 9th bit, the acknowledge bit.
• The Acknowledge bit allows the receiver to signal the transmitter that the byte

was successfully received and another byte may be sent.
• The master generates all clock pulses, including the acknowledge ninth clock

pulse.

I2C Protocol
• Address

• For seven bit addressing mode, as the name implies, the
address is seven bits long followed by an eighth bit which is
a data direction bit (R/W)
– ‘zero’ indicates a transmission (WRITE),
– ‘one’ indicates a request for data (READ)

• This address is issued by the master

I2C Addressing

• As I2C addressing can be confusing at times, what continues
should add sufficient background to help de-mystify it.

• There are two addressing modes used in I2C;
– 7bit and 10bit

• As mentioned earlier, this document will cover only 7bit
addressing which is by far the most common.

• When considering the use of multiple devices on an I2C bus
you must ensure no two devices have the same address.

• For the PCF8574 IO Expander the I2C address is made up of
two parts.
– Fixed (hard coded into the device)

– User Selectable (usually programmable at the IC)

I2C Addressing

The PCF8574 user selectable portion of the address is set by applying either
a ‘High’ or ‘Low’ logic level to pins A0 … A2 respectively9.

9. PCF8574 Remote 8-bit I/O expander for I2C-bus. 2002 Nov 22

Note : In this context a ‘High’
means pulled up to the +ve supply
(Vcc/Vdd), usually through a ‘pull
up’ resistor and a ‘Low’ means
pulled down to Ground (0V/Vss).

+ve supply

10K

Gnd

A0

Switch

• Switch open, A0 reads
as = ‘High’ or ‘1’

• Switch closed, A0
Output = ‘Low’ or ‘0’

I2C Addressing

0 1 0 0 A2 A1 A0

{ { Fixed Part User Selectable Part

0 1 0 0 A2 A1 A0 R/W

Read = 1
Write = 0

MSB LSB

• Example Read from Slave address 0x27, B0100111

0 1 0 0 1 1 1 1

• Example Write to Slave address 0x27, B0100111

0 1 0 0 1 1 1 0

This is the 7bit address + R/W
bit sent out on the SDA line
MSB first

Note : The difference between
the read and write addresses.
Although documentation makes
mention of address 0x27 the
actual address placed on the SDA
line is 0x4F and 0x4E for read
and write respectively. In other
words it has been left shifted by
1 bit position.

Bus Address
Read

Bus Address
Write

Address
(Binary)

Address
(Hex)

A2 A1 A0

01000001 01000000 0100000 0x20 0 0 0

01000011 01000010 0100001 0x21 0 0 1

01000101 01000100 0100010 0x22 0 1 0

01000111 01000110 0100011 0x23 0 1 1

01001001 01001000 0100100 0x24 1 0 0

01001011 01001010 0100101 0x25 1 0 1

01000111 01000110 0100011 0x26 0 1 1

01001111 01001110 0100111 0x27 1 1 1

For the PCF8574 all the possible device addresses are as follows;

I2C Addressing

The Arduino Wire library takes care of the necessary bit shifting (ref TWI.cpp).

Read/Write bit

I2C Byte Reading

• When reading (Master) from an I2C Slave device you will
generally need to consider the following;

– Which Slave device you are reading from (the I2C address).

– Which register in the slave you wish to read the contents of.

• So this generally will require two pieces of data to be
sent on the I2C bus by the Master. The Slave will provide
the actual data.

• In the case of the PCF8574 as it only contains one
register you don’t need to send a register address.

– Note : This varies from I2C device to device. You will need to
consult the specific data sheet for details of another IC.

I2C Byte Reading
• Pictorially this can be represented by the following

message sequence chart10

 Master Slave

0x27, Read=1

Ack

0xFF

Ack

S

P

The example on the left
assumes the following;
• Slave device :

PCF8574
• Slave address 0x27
• Slave read register

contains the value
0xFF

10. UM10204, I2C-bus specification and user manual, Rev. 6 — 4 April 2014. § 3.1.10 The slave address and R/W
bit, Fig 12

I2C Byte Writing

• When writing (Master) to an I2C Slave device you
will generally need to consider the following;
– Which Slave you are writing to (the I2C address).

– Which register in the Slave you wish to write to.

– What value you wish to write to that register.

• So this will typically require three pieces of data
to be sent on the I2C bus by the Master.

• Again in the case of the PCF8574 as it only contains one
register you don’t need to send a register address.
– Note : Just as in the above this varies from I2C device to device.

I2C Byte Writing
• Pictorially this can be represented by the following

message sequence chart11

 Master Slave

0x27, Write=0

Ack

0xFF

Ack

S

P

The example on the left
assumes the following;
• Slave device :

PCF8574
• Slave address 0x27
• Master wishes to

write the value 0xFF
to the Slave register

11. UM10204, I2C-bus specification and user manual, Rev. 6 — 4 April 2014. § 3.1.10 The slave address and R/W
bit, Fig 11

Arduino Wire Library

• The Arduino IDE comes with an ‘off the shelf’ library to
control I2C. This is known as the ‘Wire’ library;
– https://www.arduino.cc/en/Reference/Wire

• A lot of the complexity of I2C comms has been
removed and is hidden by the library.

• The Arduino ‘Wire’ library works at 100Kbps but can be
adapted for higher speeds.
– See : http://forum.arduino.cc/index.php?topic=16793.0

• It uses 7bit addressing
• It is included in your sketch the following line;

– #include <Wire.h>

https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/Wire
http://forum.arduino.cc/index.php?topic=16793.0
http://forum.arduino.cc/index.php?topic=16793.0

Example I2C Read

#include <Wire.h>

void setup() {

 Wire.begin(); // join i2c bus

}

void loop() {

 Wire.requestFrom(0x27, 1); // request 1 byte from slave device 0x27

 unsigned char c = Wire.read(); // receive a byte

}

Example I2C Write

#include <Wire.h>

void setup() {

 Wire.begin(); // join i2c bus

}

void loop() {

 Wire.beginTransmission(0x27); // transmit to device 0x27

 Wire.write(0xFF); // send a single byte with Value 0xFF

 Wire.endTransmission(); // stop transmitting

}

Trouble Shooting/Tips

• If your I2C serial display doesn’t show any text but is
illuminated, try adjusting the contrast potentiometer.

• Ensure you have SDA to SDA and SLC to SCL lines
connected. Also +Vcc and Gnd lines are attached.

• For SDA and SCL ensure the overall pull up resistance is
around 4K7Ω - 10KΩ.

• Check when adding more than one modular I2C device,
does it come with pull up resistors attached?

• If you are unsure what address has been set on your I2C
device, try running the I2CScanner Arduino sketch to ‘sniff’
out any attached devices on your I2C bus.
– http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter

http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter

References

1. http://www.nxp.com/documents/user_manual/UM1
0204.pdf

2. https://www.arduino.cc/en/Reference/Wire
3. https://en.wikipedia.org/wiki/I%C2%B2C
4. http://www.nxp.com/documents/data_sheet/PCF857

4.pdf
5. http://playground.arduino.cc/Main/I2cScanner
6. http://playground.arduino.cc/Main/I2CBi-

directionalLevelShifter
7. http://playground.arduino.cc/Code/ATMELTWI#theSo

urce

https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/Wire
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://playground.arduino.cc/Main/I2cScanner
http://playground.arduino.cc/Main/I2cScanner
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Main/I2CBi-directionalLevelShifter
http://playground.arduino.cc/Code/ATMELTWI#theSource
http://playground.arduino.cc/Code/ATMELTWI#theSource
http://playground.arduino.cc/Code/ATMELTWI#theSource

Appendix
• Decimal, Hexadecimal and Binary LUT.

 Decimal Hexadecimal (Hex) Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Appendix
• Converting a Binary byte into a Hex byte

7 6 5 4 3 2 1 0

MSB LSB

0 0 1 0 0 1 1 1

Binary
Byte
Value { {

0 0 1 0 0 1 1 1

1. Take binary value

2. Split in half. Two
Nibbles
(1 byte = 2 Nibbles)

2 7

2 7

So… B001001112= 0x2716

3. Convert Binary to
Hex. See table above

Hex
Byte
Value

4. Put the new nibbles
Back together

Jargon Buster

• HEX : Hexadecimal, base 16 numbering system

• IDE : Integrated Development Environment

• LCD : Liquid Crystal Display

• LSB : Least significant bit

• LUT : Look Up Table

• MSB : Most significant bit

• SCL : Serial Clock Line

• SDA : Serial Data Line

System Configuration

• The ‘LiquidCrystal_I2C_PCF8574’ library was
written using the following system
configuration.

– Arduino Uno R3 (Original)

– Windows 7 64bit

– Arduino Software IDE v1.6.5

• For excel spread sheet ‘CharGen1.xlsm’

– Microsoft Excel 2010 was used.

Disclaimer

• Whilst every effort has been made to ensure factual
correctness of the information contained herein. At
times best practice or ‘rule of thumb’ has been made
use of in order to simplify the explanations/examples
for the intended audience.

• As a consequence the author accepts no responsibility
for any misinterpretation resulting in subsequent
damage or loss.

• If in doubt consult the relevant data sheet in the
references.

• This document is provided free for use and is
unsupported.

