
Copyright 2001 Synaptics, Inc. 510-000080 - A Page 1

Synaptics TouchPad Interfacing Guide
510-000080 - A
Second Edition

Created: 2.0 March 25, 1998
Revision: 2.5 January 18, 2000
Printed: January 22, 2001

1. Overview
This guide describes how computers and other hosts interface to the Synaptics TouchPad.
The first section describes the TouchPad generally, including operating modes, features,
host interactions, and principles of operation, with many historical notes comparing older
versions of the Synaptics TouchPad with the present one, version 4.5. (See page 4.)

The Synaptics TouchPad family supports a variety of protocols for communicating with
the host computer. The next few sections describe the available protocols:

• The PS/2 protocol is the method that most portable computers use to interface with
keyboards and pointing devices. (See page 27.)

• The Serial protocol connects the pointing device to the host using a standard
RS-232 serial port. (See page 50.)

• The ADB protocol is used by Apple Macintosh family computers. (See page 64.)

In each case, the TouchPad supports the industry standard “mouse” protocol plus a
number of TouchPad-specific extensions. This Guide describes the PS/2 and Serial
protocols in complete detail, and the ADB protocol in all details not covered by Apple
publications. System architects and developers can read these sections of the Guide to
learn how to interface to the TouchPad hardware. (For detailed mechanical and electrical
data, refer to the various Model TM41xx Product Specification sheets also available from
Synaptics.)

Most operating systems provide driver software to handle the TouchPad at the hardware
level. Software developers will be more interested in the TouchPad Driver API, a high-
level interface that Microsoft Windows® applications can use to take advantage of all the
special abilities of the Synaptics TouchPad and the Synaptics drivers. (See page 73.)

The Glossary/Index (page 79) defines all the technical terms that appear in this Guide.

Synaptics, Inc.
2381 Bering Drive
San Jose, California 95131
(408) 434-0110
Fax (408) 434-9819

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §1.1 Page 2

1.1. Table of Contents

1. Overview—1
1.1. Table of Contents—2

2. TouchPad Features—4
2.1. Mouse-compatible Relative mode—4
2.2. Packet rate—5
2.3. Absolute mode—5

2.3.1. Absolute mode state bits—6
2.3.2. Absolute X and Y coordinates—7
2.3.3. Absolute mode Z values—8
2.3.4. Absolute mode W values—8

2.4. Information queries—10
2.4.1. TouchPad identification—10
2.4.2. Model ID bits—11
2.4.3. Coordinate resolution—13
2.4.4. Extended capability bits—15
2.4.5. Serial numbers—16
2.4.6. Reading the mode byte—16

2.5. Mode byte—17
2.6. Principles of operation—20

2.6.1. Sensing finger presence—20
2.6.2. Filtering position data—20
2.6.3. Sensing motion—21
2.6.4. Sensing tapping gestures—21
2.6.5. TouchPad calibration—22
2.6.6. Host interface to TouchPad—22

2.7. Synaptics TouchPad model numbers—25

3. PS/2 Protocol—27
3.1. Electrical interface—27

3.1.1. Connector pinouts—28
3.2. Byte transmission—29

3.2.1. Output to host—29
3.2.2. Input from host—30
3.2.3. Acknowledgement of commands—31

3.3. Power-on reset—31
3.4. Command set—33
3.5. TouchPad special command sequences—36

3.5.1. Information queries—36
3.5.2. Mode setting sequence—40

3.6. Data reporting—40
3.6.1. Default packet format—40
3.6.2. Absolute packet format—41

3.7. PS/2 implementations—43
3.7.1. The keyboard controller—43
3.7.2. Sample PS/2 implementation—45

4. Serial Protocol—50
4.1. Electrical interface—50

4.1.1. TTL-level Serial TouchPad—53
4.2. Byte transmission—54
4.3. Power-on reset—54
4.4. Command set—56

4.4.1. Serial command timing—56
4.4.2. Identify TouchPad command—57
4.4.3. Read TouchPad Modes command—57

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §1.1 Page 3

4.4.4. Set TouchPad Modes command—58
4.4.5. Read Model ID command—59
4.4.6. Read Serial Number command—60
4.4.7. Read Resolutions command—61

4.5. Data reporting—62
4.5.1. Default packet format—62
4.5.2. Absolute packet format—63

5. ADB Protocol—64
5.1. Electrical interface—64
5.2. Byte transmission—65
5.3. Power-on reset—66
5.4. Command set—66

5.4.1. ADB Register 0—66
5.4.2. ADB Register 1—67
5.4.3. ADB Register 2—68
5.4.4. ADB Register 3—70

5.5. Data reporting—70
5.5.1. Default packet format—70
5.5.2. CDM Relative mode packet format—71
5.5.3. Absolute packet format—71

6. Driver API—73
6.1. API basics—73
6.2. Information available from the API—75
6.3. Sample program—76

7. Appendices—77
7.1. Historical TouchPad features—77

7.1.1. Old-style mode bytes—77
7.1.2. Fast PS/2 mode byte access—78

7.2. Glossary and Index—79
7.3. References: Synaptics literature—90
7.4. References: Other literature—90

Synaptics is a registered trademark, and Edge Motion, Virtual Scrolling, and Palm Check are
trademarks, of Synaptics, Inc.
Apple and Macintosh are registered trademarks, and Apple Desktop Bus is a trademark, of Apple
Computer, Inc.
IBM and PS/2 are registered trademarks of International Business Machines Corporation.
Microsoft, MS-DOS, Windows, Windows 95, and Windows NT are registered trademarks of Microsoft
Corporation.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.1 Page 4

2. TouchPad Features
The Synaptics TouchPad is a pointing device for computers and other electronic devices.
To the user, the TouchPad is a flat, usually rectangular area of the computer which is
sensitive to finger touch. By putting the finger on the TouchPad sensor and moving the
finger around, the user can maneuver a cursor around the computer screen. By clicking a
button or tapping directly on the pad, the user can select and drag objects on the screen.
The TouchPad serves the same role in a computer system as a mouse or trackball, but its
compact size, low cost, and lack of moving parts makes it ideal for portable computers.
The Synaptics TouchPad’s advanced features make it the solution of choice for a variety
of applications above and beyond simple mouse replacement.

Synaptics offers a family of TouchPad models of various shapes and sizes, which connect
to the rest of the computer system (the “host”) using several different protocols.
However, there are also many things that all Synaptics TouchPads have in common:
They support the same features and modes; they offer roughly the same set of commands
and queries to the host; they operate according to the same principles. This first part of
the Interfacing Guide describes the common aspects of the Synaptics TouchPad.

2.1. Mouse-compatible Relative mode
When power is applied, the Synaptics TouchPad identifies itself to the host computer as a
regular mouse. This allows the TouchPad to be used with standard mouse drivers. This
mouse-compatible mode is called Relative mode because finger actions are reported to
the host in terms of relative mouse-like motions across the pad. The TouchPad reports
this relative motion to the host in mouse-compatible packets. The TouchPad generates
roughly 40–80 packets per second. Each packet reports the amount of motion in the X
(horizontal) and Y (vertical) directions that has occurred since the previous packet.
These amounts of motion are called deltas, and are written “∆X” and “∆Y”. The packet
also reports information about the left and right “mouse” buttons.

Field Size (bits) Range Meaning

∆X 8 ±127 Amount of horizontal finger motion

∆Y 8 ±127 Amount of vertical finger motion

Left 1 0 or 1 State of left physical button or tap/drag gesture

Right 1 0 or 1 State of right physical button

Figure 2-1. Contents of Relative packet

Because the Relative packet is designed to be compatible with the existing mouse
protocol, the exact contents of the Relative packet vary from one protocol to another. See
the later sections of this Guide for details. (For example, in the PS/2 protocol, the packet
actually reports 9-bit deltas, plus a third “middle” button which is not supported by
current Synaptics products. Also, positive ∆Y values correspond to upward motion in the
PS/2 protocol, but to downward motion in the Serial and ADB protocols.)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.2 Page 5

In Relative mode, placing the finger on the pad does not automatically cause packets to
be sent. However, moving the finger in any direction produces a sequence of packets that
describe the motion. Pressing or releasing a mouse button causes the TouchPad to send a
packet reporting this change in the state of the buttons. Tapping the finger quickly on the
pad also simulates a brief click of the left mouse button, and the “tap-and-a-half” drag
gesture simulates an extended motion with the left button held down. (Figure 2-17 of
section 2.6.4 illustrates these gestures in a technical way; the on-line help that comes with
Synaptics’ driver software has more user-oriented descriptions of the tapping gestures.)

When there are no finger motions or button state changes to report, the TouchPad ceases
to transmit packets and remains silent until the next motion or button activity.

2.2. Packet rate
The Synaptics TouchPad reports approximately 40 packets per second by default. By
setting the Rate bit of the mode byte (see section 2.5), the host can double the packet rate
to approximately 80 packets per second.

The higher packet rate is preferable because it leads to the smoothest cursor motion.
Versions 5.0 and later of the Synaptics TouchPad drivers for Windows® 95 and
Windows NT® use the higher packet rate by default.

The TouchPad defaults to the lower packet rate for the benefit of slower hosts that cannot
keep up with 80 packets per second. Also, the low packet rate mode does more internal
data filtering and so may perform better in environments of extreme electrical noise.

2.3. Absolute mode
Synaptics TouchPads also support an Absolute mode of operation, where the TouchPad
transmits an extended packet which reports the absolute finger position on the pad (X, Y),
the finger pressure or contact area (Z), and various other information such as the state of
the buttons. The Synaptics Windows 95 and Windows NT drivers operate the pad in
Absolute mode; they use advanced algorithms to transform the absolute (X, Y, Z) data
into smooth relative cursor motion, plus a wide variety of tapping and scrolling gestures
and other features such as Edge Motion™.

In Absolute mode, the TouchPad reports packets continuously at the specified packet
rate, either 40 or 80 packets per second, whenever the finger is on or near the pad.
(Specifically, the TouchPad begins sending packets when Z is 8 or more.) The TouchPad
also begins sending packets whenever any button is pressed or released. Once the
TouchPad begins transmitting, it continues to send packets for one second after Z falls
below 8 and the buttons stop changing. The TouchPad does this partly to allow host
software to use the packet stream as a time base for gesture decoding, and also to
minimize the impact if the system occasionally drops a packet.

The standard Absolute packet contains the following information:

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.3 Page 6

Field Size (bits) Range Meaning

X 13 0–6143 Horizontal finger position, 0 = far left

Y 13 0–6143 Vertical finger position, 0 = far bottom

Z 8 0–255 Pressure or contact area, 0 = no contact

W 4 0–15 Finger width and other state information

Left 1 0 or 1 State of left physical button, 0 = not pressed, 1 = pressed

Right 1 0 or 1 State of right physical button, 0 = not pressed, 1 = pressed

Gesture 1 0 or 1 Tap/drag gesture in progress, 0 = no gesture, 1 = gesture

Finger 1 0 or 1 Finger presence, 0 = no finger, 1 = finger

Figure 2-2. Contents of Absolute packet

2.3.1. Absolute mode state bits
The Absolute mode packet, like the Relative mode packet, contains several bits that
report the state of the buttons. An important difference is that in Absolute mode, the
physical buttons are reported separately from tap and drag gestures, whereas in mouse-
compatible Relative mode, gestures and buttons are mixed together and there is no way
for the host to distinguish them. (Naturally, if the host wishes for taps to act like left
button clicks even in Absolute mode, the host is free to mix the separate state bits
together itself.)

The Left and Right button bits report the current state of the two respective buttons. Each
bit is 1 if the button is currently pressed, or 0 if the button is not pressed. Note that most
Synaptics TouchPad models do not contain buttons mounted directly on the TouchPad
board, but rather supply two external connector pins to which the system designer can
attach buttons. These pins are labeled “Left” and “Right”; it is up to the system designer
to attach the pins to appropriately placed buttons.

Some Synaptics TouchPads (the “MultiSwitch” pads) support two additional buttons
labeled “Up” and “Down.” When these buttons exist, their state is also reported in the
Absolute packet. (See section 3.6.2 for information on how these buttons are reported.)

The Finger bit reports the state of the firmware’s internal finger-presence check. This is a
simple test based on comparing Z against a threshold of 25–30 units.

The Gesture bit reports the state of the “virtual” button; it is 1 during tap and drag
gestures. (See section 2.6.4 for more details on the virtual button.)

Note that the Finger and Gesture bits are fully redundant with the basic (X, Y, Z)
information reported in the packet. In fact, the Synaptics drivers ignore these two bits
and do their own more sophisticated finger and tap detection by examining Z directly.
The Synaptics TouchPad provides these bits to simplify the use of the TouchPad in
special applications where the Synaptics drivers cannot be used.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.3 Page 7

2.3.2. Absolute X and Y coordinates
The X and Y values report the finger’s absolute location on the TouchPad surface at any
given time. When Z is zero, X and Y cannot be calculated and so are reported as 0.
When Z > 0, X and Y are calculated and scaled to lie in the ranges shown in Figure 2-3.
All Synaptics TouchPad products are designed to scale their coordinates and pressure
information to the same standard range regardless of the actual size of the sensor. This
allows host software to interpret the coordinate data without needing to know the
physical type of the TouchPad.

 X axis Y axis

Absolute reportable limits 0–6143 ($0000–$17FF) 0–6143 ($0000–$17FF)

Typical bezel limits 1472–5472 ($05C0–$1560) 1408–4448 ($0580–$1160)

Typical edge margins 1632–5312 ($0660–$14C0) 1568–4288 ($0620–$10C0)

Figure 2-3. Absolute X and Y coordinates

(Note: “$” indicates hexadecimal notation.)

In this table, the absolute reportable limits are guaranteed bounds on the values reported
by the TouchPad under any circumstances. The typical bezel limits are approximate
bounds on X and Y when fingers of typical size are used on TouchPads mounted in
typical bezels. The typical edge margins are suitable limits for deciding whether the
finger is on the edge or in the interior area of the pad surface; the finger is in the interior
if X and Y lie within the edge margin limits.

The following figure illustrates the various coordinate limits:

Figure 2-4. Coordinate limits (not to scale)

Note that the typical bezel limits are inset a small distance from the “true” coordinates of
the ideal bezel opening, because the TouchPad reports the coordinates of the center of the
finger whereas the bezel constrains the perimeter of the finger. For any finger of
reasonable size, the center will be inset a bit from the perimeter. For example, see
finger A in the figure above. Similarly, the typical edge margins are inset somewhat
from the bezel limits so that fingers of all sizes, such as the larger finger B shown above,
will be able to fit within the edge zone.

Finger A

Finger B

(6143,0)

(6143,6143) (0,6143)

(0,0)

Typical edge margins

Typical bezel limits

Actual bezel opening

Absolute limits

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.3 Page 8

For “portrait” oriented TouchPads, the X and Y axis limits in Figure 2-3 are
interchanged; for example, the X bezel limits for a portrait pad would be 1408–4448.
Figure 2-11(b) of section 2.4.2 illustrates the portrait orientation.

The coordinate ranges in Figure 2-3 imply a resolution of 2000 dpi or more, depending
on the physical size of the pad. (Section 2.4.3 lists the actual resolutions for different
TouchPad models.) In practice, the usable X and Y resolution is often somewhat reduced
by the effects of electrical noise and physical jitter. Host software may need to apply
filtering or averaging to the X and Y values before using them for fine positioning;
section 2.6.2 gives some examples. In general, please remember that a TouchPad is not a
graphics tablet; designers should not expect a compact, finger-operated device to match
the stability, linearity, and repeatability of a precision pen-operated tablet.

2.3.3. Absolute mode Z values
The Z value reports the total finger capacitance, which is a function of the finger’s
contact area, which in turn is affected by the contact pressure and by the angle at which
the finger is held. The following table illustrates some typical Z values.

Value Interpretation

Z = 0 No finger contact.

Z = 10 Finger hovering near the pad surface.

Z = 30 Very light finger contact.

Z = 80 Normal finger contact.

Z = 110 Very heavy finger contact.

Z = 200 Finger lying flat on pad surface.

Z = 255 Maximum reportable Z; whole palm flat on pad surface.

Figure 2-5. Typical Z values

Note that the measurement of Z is approximate; actual reported Z values will vary from
one TouchPad to another and from one user to another. In fact, because capacitance is
influenced by environmental effects such as the moisture of the skin, Z measurements
may even vary from day to day for the same TouchPad and user.

For Synaptics TouchPad models that can sense pens as well as fingers, note that the Z
scales for pens and fingers may be different. In fact, current pen TouchPads are unable to
measure the pressure of pen contact; they report all pen strokes with a constant Z of 80.

2.3.4. Absolute mode W values
Newer Synaptics TouchPads support an optional value in the Absolute packet called
“W.” The W value is not available on all models of Synaptics TouchPads; when it is
available, it is reported only when the host enables a special “W mode.” The W value
supplies extra information about the character of the contact with the pad. The host can
use W to distinguish among normal fingers, accidental palm contact, multiple fingers,
and pens.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.3 Page 9

The following table shows the W values that are currently defined for Synaptics
TouchPads:

Value Needed capability Interpretation

W = 0 capMultiFinger Two fingers on the pad.

W = 1 capMultiFinger Three or more fingers on the pad.

W = 2 capPen Pen (instead of finger) on the pad.

W = 3 — Reserved.

W = 4–7 capPalmDetect Finger of normal width.

W = 8–14 capPalmDetect Very wide finger or palm.

W = 15 capPalmDetect Maximum reportable width; extremely wide contact.

Figure 2-6. Absolute mode W values

Sections 2.4.2 and 2.4.4 show how the host can query for multi-finger, pen, and palm
detection capability in a particular pad, as well as for the capability to report W at all.

If the capPalmDetect capability bit is set, then W values from 4 to 15 indicate that the
pad has sensed a single finger of a particular width. The host can watch for especially
wide “fingers” as evidence that the pad was activated by an accidental brush of the hand
or palm rather than deliberate finger contact. (Note that the finger width measurement is
very approximate; actual widths will vary from one TouchPad to another and from one
user to another.)

If the capMultiFinger capability bit is set, then W values 0 and 1 indicate a multi-finger
touch. The TouchPad still reports a single pair of X and Y coordinates even when
multiple fingers are on the pad. In current TouchPads, X and Y will report the point on
the pad midway between the fingers. (Future TouchPads may use a different convention,
e.g., always following the first or the last finger to make contact with the pad.)

If the capPen capability bit is set, then a W value of 2 indicates that the pad is currently
sensing a pen, not a finger. An object on the pad surface is considered a “finger” if it
forms a significant contact area and is electrically attached to ground or to a large
conductive body such as a human body. A “pen” is any other type of object, such as a
non-conductive plastic stylus, that makes contact with the TouchPad surface. (Note that
most Synaptics TouchPad products are unable to sense pens, and thus have capPen = 0;
only certain “pen-input TouchPad” models are able to sense pens as well as fingers.)

When the capPalmDetect, capMultiFinger, or capPen capability bits are clear (0), the
corresponding W values are reserved for future definition by Synaptics and should be
given no special interpretation by host software. For example, if capPen = 0 and the
TouchPad reports a W value of 2, the host should not treat the contact as a pen stroke, but
rather as a normal finger stroke with no unusual properties.

When Z = 0, the X, Y, and W values cannot be measured and are reported as 0. When Z
is positive but very small, e.g., less than 25, then the X and Y position, the finger width
and count, and the finger/pen determination will be reported but they may not be very
accurate.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.4 Page 10

Historical notes:

Older Synaptics TouchPads with the capExtended capability bit equal to 0 did not
support “W mode.” Those pads had no way to measure or report the width or count of
fingers.

A very small number of early pen-capable TouchPads were built before the introduction
of “W mode.” On pen TouchPads with capPen = 1 but capExtended = 0, pen strokes are
distinguished using the Z value: Z is 255 during a pen stroke, Z is in the range 1–254
during a finger stroke, and Z is 0 when no pen or finger is detected.

2.4. Information queries
The host can query the TouchPad for information describing the size, model, and
capabilities of the TouchPad. The exact form of this query varies from one protocol to
another, as described in later parts of this document. But the information itself is the
same regardless of the protocol. The following sections describe the various available
queries and the information they return.

2.4.1. TouchPad identification
The most basic query asks whether the device is a Synaptics TouchPad or some other
mouse-compatible pointing device. In each protocol, this query is designed as a special
command that can be sent to any mouse-compatible device, but which only a Synaptics
TouchPad will recognize.

The Identify TouchPad query returns the following information to the host:

infoMajor
The primary or “major” version of the TouchPad device and firmware.
Most older Synaptics TouchPads had a major version of 3; the modern
Synaptics TouchPads described in this document have a major version of 4.

infoMinor
The minor version number starts over at 0 with each new major version, and
increases by one whenever minor changes are made to the device or its
firmware. In a complete version number such as “4.5”, the major version is
4 and the minor version is 5.

infoModelCode
This 4-bit field encodes very limited information about the TouchPad
model. It is provided for compatibility only; modern TouchPads report
much more detailed information about themselves in the queries described
in the next few sections. New host software should not use the
infoModelCode field.

When this Guide uses the phrase “versions x.y and later” or “version ≥ x.y,” it refers to all
TouchPads with greater major version, or equal major version and greater or equal minor
version:

“version a.b ≥ x.y” is equivalent to saying “(a > x) or (a = x and b ≥ y)”

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.4 Page 11

2.4.2. Model ID bits
Synaptics TouchPads starting with version 3.2 have supported a “model ID” query which
allows the host to learn information about the physical type of the pad. The model ID
consists of 24 bits divided into various bit-fields:

Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

infoRot180 infoPortrait infoSensor

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

infoHardware Reserved

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

infoNewAbs capPen infoSimplC Reserved infoGeometry

Figure 2-7. TouchPad model ID bits

The model ID fields are defined as follows.

infoSensor (bits 21–16)
This 6-bit field identifies the type or model of TouchPad sensor; it allows
the host to determine the size and physical type of the TouchPad. The
following table lists the sensor types that have been defined as of this
writing.

infoSensor Model no. Definition

0 — Unknown sensor type

1 TM41xx134 Standard TouchPad

2 TM41xx156 Mini module

3 TM41xx180 Super module

7 (discontinued) Flexible pad

8 TM41xx220 Ultra-thin module

9 TW41xx230 Wide pad module

11 TM41xx240 Stamp pad module

12 TM41xx140 SubMini module

13 TBD MultiSwitch module

15 TM41xx301 Advanced Technology Pad

16 TM41xx221 Ultra-thin module, connector reversed

other — Reserved

Figure 2-8. Sensor types

 See section 2.7 for more information about TouchPad model numbers.

infoGeometry (bits 3–0)
This 4-bit field identifies unusual sensor arrangements such as non-
rectangular or non-flat TouchPads. This field is independent from the

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.4 Page 12

infoSensor type. For example, a standard sensor board might be mounted
beneath an oval bezel, in which case the TouchPad would be ordered from
Synaptics with special firmware that identifies the infoSensor type as 1 but
the infoGeometry type as 2. The host driver and the TouchPad itself might
then use the fact that infoGeometry = 2 to provide an oval-shaped Edge
Motion zone instead of the usual rectangular zone.

infoGeometry Definition

0 Unknown geometry

1 Standard rectangular geometry

2 Oval geometry

3–15 Reserved

Figure 2-9. Geometry types

infoHardware (bits 15–9)
This 7-bit field is reserved for use by Synaptics.

infoRot180 (bit 23)
This bit is 0 for normal “Up” TouchPads, or 1 for 180°-reversed “Down”
TouchPads designed to be mounted upside-down compared to the standard
Synaptics product. (The X/Y coordinate system as experienced by the user
is the same in both cases; thus, host software generally will not care about
the infoRot180 bit.)

 The Up orientation is defined as the orientation in which the cable exits
upwards from under the board; on most models, this is also the orientation
with the connector near the top edge of the underside of the board. The
Down orientation uses a physically identical board that is programmed in
order to work properly when mounted with the cable exiting downwards:

Figure 2-10. Up and Down orientations

infoPortrait (bit 22)
This bit is 0 for normal (“landscape”) TouchPads, or 1 for 90°-rotated
(“portrait”) TouchPads in which the X and Y coordinates still represent the
user’s horizontal and vertical axes, respectively, but the TouchPad is

Connector

(b) TM41PD-134 (Down)
 infoRot180 = 1

(a) TM41PU-134 (Up)
 infoRot180 = 0

+X +X

+Y+Y

Connector

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.4 Page 13

oriented so that it is taller than it is wide. Hence, the typical bezel limits
and typical edge margins of section 2.3.2 are approximately interchanged
X-for-Y on a Portrait pad.

Figure 2-11. Portrait orientation

 Note that the infoRot180 and infoPortrait bits can be considered together as
a two-bit field specifying a clockwise rotation of the pad in multiples of
90°.

infoNewAbs (bit 7)
This bit indicates that a new, improved Absolute packet format is available.
It is 1 except for certain older PS/2 and Serial TouchPads; see the historical
notes at the end of section 3.6.2, and the description of PackSize in
section 2.5.

infoSimpleCmd (bit 5)
This bit is 1 except for certain older PS/2 TouchPads; see the historical
notes at the end of section 3.5.2.

capPen (bit 6)
This bit is 0 for normal finger-only TouchPads, or 1 for TouchPads capable
of sensing pens as well as fingers.

Historical notes:

Some very old TouchPads do not support the “model ID” query. Each protocol provides
a way to tell whether or not a certain pad supports this query, as described below in the
sections devoted to the respective protocols. If a pad does not support the model ID
query, the pad can be assumed to have the following properties:

infoSensor = 0 (unknown) infoNewAbs = 0
infoGeometry = 1 (rectangular) infoSimpleCmd = 0

infoRot180 is unknown capPen = 0
infoPortrait = 0 (landscape)

2.4.3. Coordinate resolution
Modern Synaptics TouchPads allow the host to query for the resolution of the X and Y
coordinates in absolute-mode units per millimeter. The resolutions are reported as 8-bit

Connector

+X

+Y

Connector

+X

(b) TM41PP-134 (Portrait)
 infoPortrait = 1

+Y

(a) TM41PU-134 (Up)
 infoPortrait = 0

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.4 Page 14

numbers called infoXupmm and infoYupmm. For example, the standard TM41xxx134
module has an infoXupmm of 85 units per millimeter, which means that moving the
finger by one centimeter (10mm) on the TouchPad surface results in a change of
approximately 850 units in the X coordinate as reported in Absolute mode.

The reported resolutions for various TouchPad models are shown in Figure 2-12.

Model infoSensor Units per mm Units per inch Sensor area (mm)

Standard 1 85 × 94 2159 × 2388 47.1 × 32.3

Mini 2 91 × 124 2311 × 3150 44.0 × 24.5

Super 3 57 × 58 1448 × 1473 70.2 × 52.4

UltraThin 8 85 × 94 2159 × 2388 47.1 × 32.3

Wide 9 73 × 96 1854 × 2438 54.8 × 31.7

Stamp 11 187 × 170 4750 × 4318 21.4 × 17.9

SubMini 12 122 × 167 3099 × 4242 32.8 × 18.2

Figure 2-12. TouchPad resolutions

The “units per mm” values in this table are the infoXupmm and infoYupmm resolution
numbers reported by the various TouchPad models; units per inch (i.e., “DPI”) are
computed by multiplying units per mm by 25.4. In each case, the resolution is shown in
the form “X × Y”. Please note that these resolutions are only approximate.

The sensor area is computed based on the bezel limits in Figure 2-3, which span
5472 – 1472 = 4000 units in X and 4448 – 1408 = 3040 units in Y. Dividing the total
width of the pad in units by the number of units per millimeter gives the width in
millimeters, as shown in the rightmost column of Figure 2-12. Note that this represents
the comfortable range of motion of a typical finger within a typical bezel, not the size of
the bezel opening. See section 2.3.2 for more discussion of coordinate limits.

The values shown in Figure 2-12 are for pads in the normal “landscape” orientation; for
portrait-oriented pads (with infoPortrait = 1), the axes are exchanged. For example, a
portrait UltraThin pad would have a 32.3 × 47.1mm sensor area and report a resolution of
94 × 85 units per millimeter.

Note that the resolution described in this section applies only to Absolute mode; in
Relative mode, the resolution is variable and may depend on the protocol in use. See
section 2.6.3 for information about the resolution in Relative mode.

Historical notes:

Older TouchPads do not support the resolution query. Each protocol provides a way to
tell whether or not a certain pad supports the query. If the pad does not support the
resolution query, use the table of Figure 2-12 indexed by the infoSensor code obtained
from the model ID query (section 2.4.2), or simply assume a default resolution of 85 × 94
units per millimeter.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.4 Page 15

2.4.4. Extended capability bits
Modern Synaptics TouchPads support an “extended capability” query which returns to
the host 16 bits indicating the presence or absence of various advanced features. In
typical modern pads, the capability bits will be $8013 (hexadecimal), i.e., bits 15, 4, 1,
and 0 are set and all other bits are clear.

The capability bits are arranged as follows:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

cExtended — — — — — — —

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

— — — cSleep cFourBtn — cMultiFing cPalmDet

Figure 2-13. TouchPad extended capability bits

Bits shown as “—” in Figure 2-13 are reserved for future use. The host should ignore the
values of reserved bits when reading the capability bits.

capExtended (bit 15)
This bit is set if the extended capability bits are supported. The host can
examine this bit to see whether the other 15 extended capability bits are
present; see the historical notes below. The capExtended bit also signifies
that the TouchPad supports “W mode” as described in sections 2.3.4
and 2.5.

capSleep (bit 4)
For the PS/2 protocol, the capSleep bit is set if sleep mode is supported.
See the discussion of the “Sleep” bit in section 2.5.

 For other protocols, this capability bit is reserved.

capFourButtons (bit 3)
For the PS/2 protocol, this bit is set if the pad is a “MultiSwitch” pad which
supports four mouse buttons labeled Left, Right, Up, and Down. In the
PS/2 protocol, the Up and Down buttons are reported only during Absolute
Mode with the Wmode bit set. See section 3.6.2.

 For other protocols, this capability bit is reserved.

capMultiFinger (bit 1)
This bit is set if multi-finger detection is supported. The pad is then able to
count the number of simultaneous fingers on the pad and report the finger
count via the W field of the Absolute packet. If this bit is 0, the pad does
not support multi-finger detection; any finger contact will be assumed to be
a single finger, with the position reported as the midpoint between all actual
fingers, and, if capPalmDetect is set, with W reporting a (typically large)
“width” for the assumed single finger.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.4 Page 16

capPalmDetect (bit 0)
This bit is set if “palm detection” is supported. In “W mode,” the TouchPad
measures the apparent size or width of the finger and reports the width in
the W field of the Absolute mode packet. The host can use this information
to help distinguish between intentional finger contact and accidental palm
or hand contact.

Note that the capPen bit is used in the same way as an extended capability bit, but it is
reported as part of the “model ID” query response (section 2.4.2).

Historical notes:

The extended capability bits are a relatively recent addition to the Synaptics TouchPad
product line. All TouchPads starting with version 4.5 have extended capability bits;
some models of older 4.x firmware also have capability bits, but there are many older
pads in the field which do not support capability bits. In those older pads, the capability
bit field was fixed at $5555 (hexadecimal). In very old pads (prior to version 3.2), this
field was used to hold adjustable edge margin information, with $5555 as the power-up
default value. Starting with version 3.2, the actual edge margins became fixed at the
positions shown in Figure 2-4, and the host-readable $5555 value became a vestige.

To determine whether or not a Synaptics TouchPad supports capability bits, use the
following procedure:

1. Read the infoMajor version number as described in section 2.4.1. If 3 or below,
assume the capability bits are $0000. If 4 or above, continue with step 2.

2. Perform the “extended capability” query, to receive a 16-bit field.

3. If bit 15 of the received 16-bit field is 0, assume the capability bits are $0000.

4. If bit 15 of the received 16-bit field is 1, use the received field as the capability bits.

2.4.5. Serial numbers
Synaptics plans soon to include a unique host-readable serial number in each new
TouchPad. Even though serial numbers are not yet in production, the TouchPad interface
defines a protocol for querying a device for its serial number. The serial number consists
of a total of 36 bits, which are reported to the host in the form of a 12-bit “prefix” and a
24-bit “suffix.” Synaptics does not specify the internal structure of these 36 bits, but
Synaptics does guarantee that the complete 36-bit serial number will be unique among all
TouchPads produced. Synaptics does not guarantee that the serial numbers will be
consecutive or otherwise related, even within the same manufacturing lot.

For TouchPads which have not been serialized (including all TouchPads produced so far
at Synaptics), the serial number query will return a default value of zero.

2.4.6. Reading the mode byte
Synaptics TouchPads support a “mode byte” query which returns to the host the current
value of the TouchPad mode byte. The mode byte is described in section 2.5 below.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.5 Page 17

2.5. Mode byte
The Synaptics TouchPad has a small set of configurable features which are encapsulated
in the TouchPad mode byte, an 8-bit bit mask which the host can set to any value using a
special command. The exact forms of the commands to set and read the mode byte vary
from one protocol to another, as described in later parts of this document. The layout of
the mode byte itself, however, is fairly consistent between protocols.

The power-on initial setting for the mode byte is $00. During normal operation, the
mode bits are generally preserved except when explicitly changed by a host command.
Also:

• In the PS/2 protocol, the PS/2 Reset ($FF) and Set Defaults ($F6) commands clear
the Absolute bit to 0 but do not affect the other mode bits.

• In the Serial protocol, the RTS handshake clears the entire mode byte to $00.

The mode byte is arranged as follows:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Absolute Rate — — Baud/Sleep DisGest PackSize Wmode

Figure 2-14. TouchPad mode byte

Bits shown as “—” in Figure 2-14 are reserved for future use. The host should ignore the
values of reserved bits when reading the mode byte. The host may either set the reserved
bits always to zero, or preserve the last-read values of the reserved bits, when changing
the mode byte; the host must not change a reserved bit from 0 to 1.

Absolute (bit 7)
This bit is 0 to select Relative (mouse-compatible) mode, or 1 to select
Absolute mode. See sections 2.1 and 2.3.

Rate (bit 6)
This bit is 0 to select a low packet rate of approximately 40 packets per
second, or 1 to select a high packet rate of approximately 80 packets per
second. This bit is valid in all protocols; it is valid in both Relative and
Absolute mode. See section 2.2.

Baud / Sleep (bit 3)
For the Serial protocol, this is the Baud bit. The Baud bit is 0 to select 1200
baud packet reporting, or 1 to select 9600 baud packet reporting. The Baud
bit should be set whenever the Rate bit or the Absolute bit is set. See
section 4.2 for more information about the Serial baud rate.

 For the PS/2 protocol, this is the Sleep bit. The Sleep bit is 0 for normal
operation, or 1 for “sleep” mode. When sleep mode is enabled, the pad
goes into a low-power idle state in which it ignores finger activity. In sleep
mode, only button presses will cause the pad to generate a motion packet.
When the Sleep bit is changed from 1 to 0, the pad may need to spend 300–
1000ms recalibating before finger sensing will resume. The Synaptics
drivers use sleep mode for ACPI power management support. The Sleep bit

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.5 Page 18

is defined only in Relative mode on pads whose capSleep capability bit is
set; in Absolute mode and in pads without this capability, the bit is reserved
and should be left at 0. Also, DisGest should be set whenever Sleep is set.

 The Baud / Sleep bit is defined only for the PS/2 and Serial protocols; for
other protocols, the bit is reserved and hence should be left at its default
value of 0.

DisGest (bit 2)
This bit is 0 to enable “tap” and “drag” gesture processing, or 1 to disable
detection of tap and drag gestures. When this bit is 1, the Relative mode
mouse packet reports the true physical button states, and the Absolute mode
packet’s Gesture bit always reports as zero. The DisGest bit is implemented
only for 4.x and later TouchPads (i.e., when infoMajor ≥ 4); for older pads,
the bit is reserved.

PackSize (bit 1)
For the Serial protocol, this bit is 0 to select six-byte Absolute packets, or 1
to select seven- or eight-byte packets (per the Wmode bit). This bit is
defined only in Absolute mode in Serial TouchPads with the infoNewAbs bit
set (see section 2.4.2); in Relative mode, when infoNewAbs = 0, and at all
times in non-Serial protocols, this bit is reserved and should be left at 0.

Wmode (bit 0)
This bit is 0 to select normal Absolute mode packets, or 1 to select
enhanced Absolute packets that contain the “W” value as well as X, Y, and
Z. See section 2.3.4 for more information about W; see the later sections on
the particular protocols for more information about packet formats. This bit
is defined only in Absolute mode on pads whose capExtended capability bit
is set; in Relative mode and in pads without this capability, the bit is
reserved and should be left at 0.

The following table shows some typical values for the mode byte in the PS/2 protocol:

Value (hex) When to use Effect

$00 Always OK Relative mode

$04 Version 4.x or later Relative mode with gestures disabled

$40 Always OK Relative mode with high packet rate

$80 capExtended = 0 Absolute mode

$81 capExtended = 1 Absolute mode with W

$C0 capExtended = 0 Absolute mode with high packet rate

$C1 capExtended = 1 Absolute mode with W, high packet rate

$0C capSleep = 1 Low-power sleep mode

Figure 2-15. PS/2 mode byte values

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.5 Page 19

The following table shows some typical values for the mode byte in the Serial protocol:

Value (hex) When to use Effect

$00 Always OK Relative mode (1200 baud)

$04 Version 4.x or later Relative mode with gestures disabled (1200 baud)

$48 Always OK Relative mode with high packet rate (9600 baud)

$88 Versions before 3.2 Absolute mode (9600 baud, 6-byte packets)

$8A capExtended = 0, ≥ v3.2 Absolute mode (9600 baud, 7-byte packets)

$8B capExtended = 1 Absolute mode (9600 baud, 8-byte packets with W)

$C8 Versions before 3.2 Absolute mode (high packet rate, 6-byte packets)

$CA capExtended = 0, ≥ v3.2 Absolute mode (high packet rate, 7-byte packets)

$CB capExtended = 1 Absolute mode (high packet rate, 8-byte packets/W)

Figure 2-16. Serial mode byte values

Historical notes:

The Absolute, Rate, and Baud bits have always been present in Synaptics TouchPads.
The other mode bits have been introduced over time as new optional features were added
to the TouchPad product.

Older (3.x) versions of the TouchPad actually supported four bytes of mode information;
the mode byte described in Figure 2-14 is the descendent of the original “mode byte 2.”
The four original mode bytes provided considerably more control over the pad’s
operation in Relative mode. The host could independently control the detection of taps,
drags, and corner-zone taps; it could turn Edge Motion on and off and adjust the sizes of
the edge zones; it could adjust the Z threshold for finger detection. In the modern
TouchPad, all of these jobs are left to the host driver, which is in a position to provide a
higher quality implementation of these features with even greater adjustability. The
TouchPad itself implements only the simple gestures and other features necessary for
basic mouse emulation in the presence of a non-Synaptics-aware driver. Section 7.1.1
describes the layout of the four original mode bytes.

The DisGest bit is now the only mode bit intended for use in Relative mode; note that
because the PS/2 reset sequence does not affect this mode bit, a computer BIOS can set
this bit to ensure that gestures are disabled even when a non-Synaptics mouse driver is
used. (However, Synaptics recommends that DisGest be left at 0; experience shows that
most TouchPad users prefer to have tapping gestures enabled.)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.6 Page 20

2.6. Principles of operation
The next few sections provide some useful background information on how the Synaptics
TouchPad senses fingers and how it translates finger actions into useful pointing
behavior.

2.6.1. Sensing finger presence
The standard Synaptics TouchPad uses capacitive sensing to detect fingers. Whenever
two electrical conductors are placed flat against each other separated by a thin insulator,
an electrical capacitor is formed. The human body is a good conductor of electricity. In
a TouchPad, a capacitor is formed by the human finger and a grid of electrical conductors
with a thin insulating Mylar label between. By measuring the capacitance of each
conductor in the grid, the TouchPad can accurately determine the position of the finger as
horizontal and vertical (X and Y) coordinates on the pad surface. By measuring the total
amount of capacitance, the TouchPad can also determine the approximate finger pressure
“Z”. (This works because the harder the user presses down, the more the finger flattens
out against the pad; larger contact area leads to larger total capacitance.)

2.6.2. Filtering position data
The TouchPad uses a variety of “filtering” algorithms to convert the raw X and Y
computations into smooth, pleasing motion even when electrical noise and physical
effects have introduced some jitter into the TouchPad’s capacitance measurements. In
Relative mode, the pad applies several filtering and acceleration algorithms as described
in this section and section 2.6.3. In Absolute mode, the X and Y coordinates receive
some basic filtering and are then passed on to the host with no further processing. For
host software that uses Absolute mode, it may be worthwhile to apply some extra
filtering to the X and Y values before using them for fine positioning.

Many filtering algorithms exist; no one algorithm is perfect for all applications. One
simple method, the windowed average algorithm, computes each filtered coordinate value
as the average of the last two unfiltered values. If U stands for the unfiltered finger
position and X for the result of the filtering operation, then

 Xnew = (Unew + Uprev) / 2 (eq. 1)

in the simple windowed average algorithm. (Here Unew is the most recent finger position,
and Uprev is the previous finger position, i.e., from the previous packet in the sequence of
packets during a finger stroke.)

Another method is the decaying average algorithm:

 Xnew = (Unew + Xprev) / 2 (eq. 2)

On the very first packet of a finger stroke, there is no value available yet for Uprev or
Xprev ; hence, for this initial packet, it is reasonable to let Xfirst = Ufirst.

To increase the degree of smoothing, simply average three or more recent U values in the
windowed average filter, or use a weighted average such as ¼ Unew + ¾ Xprev in the
decaying average filter.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.6 Page 21

In Absolute mode, the TouchPad internally applies an unweighted decaying average filter
to the X and Y data from each finger stroke. Normally, this filtering is enough to
produce usable position data with no undesirable artifacts. In special applications, the
host can apply its own additional stage of windowed average or decaying average
filtering. Also, in very special applications, the host can undo the effect of the built-in
decaying average filter by “solving” equation (2) above for Unew as a function of Xnew
and Xprev.

2.6.3. Sensing motion
When no finger is on the pad, the Z value is normally zero. To detect a finger motion, the
TouchPad looks for Z to increase beyond a “touch threshold,” then for the X and Y
positions to change in some way from each packet to the next, and finally for Z to return
to zero. This sequence of events makes up one finger stroke across the surface of the
pad. The successive changes in (X, Y) during a stroke are translated into a succession of
motion deltas (∆X, ∆Y) which are sent to the host; when the host translates these deltas
into cursor motions, the cursor moves in a way that closely mimics the motion of the
finger on the pad.

In principle, the motion deltas are simply the differences of successive positions
multiplied by a suitable factor to cause a pleasing speed of cursor motion for a normal
speed of finger motion. In other words,

 ∆X = ST × (Xnew – Xprev), and (eq. 3a)
 Cnew = Cprev + (SC × ∆X), (eq. 3b)

where X is the finger position on the pad, C is the cursor position on the screen, and
ST and SC are the speed factors employed by the TouchPad and the host mouse driver,
respectively. If SC were exactly 1.0, then ∆X would be measured in units of screen pixels
of motion. Because SC is not 1.0 in typical mouse drivers, ∆X is measured in arbitrary
units of mouse motion which are known in the industry, believe it or not, as mickeys.

Most mouse drivers include an “acceleration” feature which varies SC based on the
mouse speed in order to help fast mouse motions cover more distance on the screen. The
Synaptics TouchPad also includes its own acceleration feature which varies ST based on
the speed of finger motion. The TouchPad’s acceleration feature acts mainly at low
speeds, and is designed to complement the high-speed acceleration seen in mouse drivers.
In the Synaptics TouchPad, ST is approximately 0.11 mickeys per Absolute position unit
at normal finger speeds; ST drops to about 0.04 at very low finger speeds. Section 2.3.2
describes Absolute position units. For a standard model TM41xxx134 TouchPad module,
the overall speed factor is about 240 mickeys per inch or 9 mickeys per millimeter at full
speed. Figure 2-12 of section 2.4.3 gives the Absolute mode resolutions for various other
Synaptics TouchPad models; multiply by 0.11 to get the expected number of mickeys per
inch in Relative mode.

2.6.4. Sensing tapping gestures
For the purposes of this document, a gesture is any motion or action of the finger that the
system interprets as something other than regular cursor motion. The TouchPad itself

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.6 Page 22

supports tap and drag gestures for simulating mouse button clicks using the finger; the
Synaptics TouchPad drivers add several more gestures such as “Virtual Scrolling™.”

To detect a tapping gesture, the TouchPad looks for Z to increase beyond the touch
threshold and then to return to zero after only a fraction of a second, with little or no X or
Y motion during this time. Note that a tap is actually detected shortly after the finger has
left the pad, so the virtual button click as reported to the host begins after the actual
tapping action is finished. Figure 2-17 illustrates tap and drag detection.

Figure 2-17. Tap and drag gestures

In this figure, the Z value and the state of the “virtual” left button are plotted against time
as the user executes first a simple tap, then a drag gesture. Higher Z indicates the
presence of a finger on the pad; a high level on the Button signal represents a simulated
left button press as reported by the TouchPad.

To move the cursor a long distance, the user may need to make several finger stokes. But
because a drag gesture ends when the user lifts the finger, the entire drag must occur in a
single stroke. Synaptics TouchPads offer a feature called Edge Motion™ to assist with
long-distance drags: If, during a drag, the finger reaches the edge of the pad, the
TouchPad begins to send a constant-speed motion signal to the host which continues as
long as the finger stays at the edge.

2.6.5. TouchPad calibration
In order to sense the finger’s capacitance accurately, the TouchPad must perform an
initial step called calibration, which takes several hundred milliseconds. The TouchPad
automatically calibrates itself upon power-up; in the PS/2 protocol, the TouchPad also
recalibrates itself in response to a Reset ($FF) command. Calibration runs completely
automatically; the only user-visible consequence is that the pad will be unable to sense
fingers until calibration is finished. Also, if a finger was present on the pad during
calibration, then the pad may miss the very first finger stroke after calibration. After the
first stroke ends and the finger is taken off the pad, the TouchPad will operate normally.

2.6.6. Host interface to TouchPad
In a typical computer system, there are many levels of hardware and software between
the TouchPad and the application software. This section will present an overview of the
various steps in the path from TouchPad to application in an IBM PC-compatible
computer.

In modern PC’s, the pointing device talks to the computer using either the PS/2 protocol
(see section 3) or the RS-232 serial protocol (see section 4). “Bus mice” were popular in
earlier days but have since fallen out of use. Some early serial mice used different

Drag Tap

Z

Button

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.6 Page 23

protocols, but today serial mice have mostly converged on the protocol described in
section 4, particularly Figure 4-16. In the future, USB (the Universal Serial Bus) may
replace the PS/2 and RS-232 protocols, but as of this writing USB has had little
penetration in the field of pointing devices. Contact Synaptics for more information
about USB TouchPads.

Figure 2-18 illustrates a typical path that motion data travels on its way from a PS/2
TouchPad to a Windows® 95 application:

Figure 2-18. TouchPad to host data path (PS/2)

In step 1, the TouchPad contains a sensing mechanism and a microcontroller which
converts raw sensor data into a form suitable for communication to the host.

In step 2, the keyboard controller (KBC) chip implements the host side of the PS/2
interface for the pointing device as well as the keyboard. The KBC communicates with
the TouchPad via CLK and DATA wires as described below in section 3.2. The KBC
often has other responsibilities as well, such as power management. When the KBC is
occupied with other duties (power management, keyboard processing), it holds the
TouchPad’s CLK wire low to make sure the device does not try to talk.

The KBC communicates to the main CPU via I/O ports 60h and 64h and IRQ 12. When
a byte of motion data arrives from the TouchPad, the KBC posts this data to port 60h,
asserts IRQ 12, and pulls CLK low to prevent the TouchPad from sending more data.
When the CPU responds to IRQ 12 by reading from port 60h, the KBC releases the CLK
line and the TouchPad sends the next motion byte. (See section 3.7.1 for more discussion
of the KBC.)

The standard PC BIOS software (step 3) provides a set of high-level mouse operations on
INT 15h, function C2h. The original purpose of the BIOS was to isolate driver software
from the details of I/O ports and IRQs, but nowadays many drivers talk directly to the
KBC instead of using the BIOS facilities. (Note the gray arrow in Figure 2-18 between
the driver and the KBC.)

Frank van Gilluwe’s book, The Undocumented PC, is an excellent reference to the KBC
and the BIOS from the point of view of host software.

Application

Windows 95

Driver

KBC

BIOS

TouchPad

Driver API

I/O 60h & 64h

Windows API

INT 15h

TouchPad API

Direct port access

PS/2 protocol
1

3

5

2

4

6

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.6 Page 24

For a Serial TouchPad, the path is similar except that a UART chip services the serial
ports instead of the KBC. Also, serial pointing device drivers generally always use direct
port access to the UART, since there are only rudimentary serial port facilities in the
standard BIOS.

The driver (step 4) may be either a general-purpose mouse driver or the Synaptics
TouchPad driver. The TouchPad driver does all the work of a mouse driver, as well as
offering a variety of features which take advantage of the TouchPad’s special abilities.
The driver translates the information from the TouchPad into cursor motion and button
press events in a form that Windows can use.

In step 5, the Windows operating system uses the motion information from the driver to
display and move a cursor image on the screen. When the driver reports that a button has
been clicked, Windows sees which application’s window holds the cursor and forwards a
Windows API (Application Programming Interface) message to that application (step 6).

Figure 2-19 compares the processing steps taken when the TouchPad is used with a
standard mouse driver and with the Synaptics Windows 95 or NT TouchPad driver.

Figure 2-19. Motion processing in TouchPad and driver

Note that the processing steps are substantially the same, but the steps occur in different
places depending on which kind of driver is used. With the standard mouse driver, the
TouchPad is responsible for all processing including converting (X, Y, Z, W) position
information into (∆X, ∆Y, button) motion and tap gesture information. With the
Synaptics TouchPad driver, the TouchPad operates in Absolute mode and reports
(X, Y, Z, W) directly to the driver, which then takes over the motion and tap gesture
processing itself.

Motion & tap
computation

Position
computation

MS Windows

Sensors

(b) Synaptics TouchPad Driver (a) Standard Mouse Driver

Driver

TouchPad

∆X,∆Y,buttons

Cursor motion

X,Y,Z,W

Raw data

Motion & tap
computation

Position
computation

MS Windows

Sensors

∆X,∆Y,buttons

Cursor motion

X,Y,Z,W

Raw data

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.7 Page 25

Putting more of the processing in the driver has two advantages: First, the driver
executes on a powerful CPU and so is able to use better algorithms with better pointing
performance; second, the driver now has access to the raw absolute data, which it can
then provide to TouchPad-aware applications even though the driver still interfaces to
Windows itself as a simple mouse driver.

The Synaptics TouchPad driver has its own API which applications can use to get X, Y,
Z, W, and other TouchPad-specific information, as shown by the second gray arrow
between steps 4 and 6 in Figure 2-18. Section 6 of this Guide describes the Synaptics
TouchPad driver API.

2.7. Synaptics TouchPad model numbers
Synaptics offers a wide variety of TouchPad products. These products are identified by
the model number, an alphanumeric string that encodes the board size and type, host
communication protocol, label color, and general feature set. This section provides a
rough description of the model number scheme; contact Synaptics for more complete
information on the available models.

A typical Synaptics TouchPad model number looks like this:

T M 4 1 P U G X 1 3 4 – 1

Product class
ASIC type

Host protocol
Orientation
Color code

Auxiliary feature
Board type

Revision

Figure 2-20. TouchPad model number

The primary product class is TM (TouchPad module, the basic capacitive finger-operated
TouchPad).

The ASIC type 41 identifies newer pads employing the T1004 ASIC. The ASIC type 21
signifies an older pad using a T1002 ASIC with a separate microprocessor chip.

Possible host protocol letters include P (PS/2), B (PS/2-and-Serial combo), and A (ADB).
Other less common letters are S (Serial-only) and T (TTL-level serial; see section 4.1.1).

The orientation letter is U (Up), D (Down), or P (Portrait). The “up” orientation is
defined as the orientation in which the cable exits from the top edge of the board, i.e.,
away from the user, as shown in Figure 2-10(a).

The color code letter identifies the color of the mylar label that forms the touch-sensitive
surface of the pad. For example, color G is the standard Synaptics Slate color; contact

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §2.7 Page 26

Synaptics for information about additional colors. (Note that the color letter is the only
part of the model number which cannot be read out using the host queries described in
section 2.4.)

The auxiliary feature letter is an optional letter that follows the color code; it is present if
the TouchPad has unusual or custom-ordered hardware or firmware features.

The board type identifies the physical size, shape, and thickness of the TouchPad sensor
board. Type 134 signifies the standard 65 × 49 × 1.9mm board. Figure 2-8 lists some
additional board type codes.

The revision suffix is a single number that encodes the overall product revision level. It
plays a similar role to the major/minor version number of section 2.4.1; however, the
revision suffix can change while the version number stays the same, for example to
reflect a change in the manufacturing process. Also, the version number can change
while the revision suffix stays the same, for example when a version of firmware is
developed at Synaptics but never put into production.

For further information about model numbers, or to order samples of any TouchPad
model, contact Synaptics at (408) 434-0110 or sales@synaptics.com.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.1 Page 27

3. PS/2 Protocol
The PS/2 protocol allows synchronous, bidirectional bit-serial communication between
the host and the pointing device. Either side may transmit a command or data byte at any
time, although only one side can transmit at one time. During initialization, the host
sends command bytes to the device. Some commands are followed by argument bytes.
The device acknowledges each command and argument byte with an ACK ($FA) byte,
possibly followed by one or more data bytes. If the host has enabled “Stream mode”
transmission, then the device may send spontaneous data packets to the host describing
finger motions and button state changes.

TouchPads integrated into notebook computers typically use the PS/2 protocol.

3.1. Electrical interface
The PS/2 protocol includes two signal wires as well as +5V power and ground. The
signal wires, CLK and DATA, are bidirectional “open-collector” signals; they are
normally held at a high (+5V) level by a 5–10K pull-up resistor on the host, but either the
host or the TouchPad device can pull them low at any time. When the port is idle, both
signal wires are floating high. The host can inhibit the device at any time by holding
CLK low.

Note that neither side ever actively pulls CLK or DATA high; to output a logic 1, the
wire is left undriven and allowed to float high. The CLK and DATA lines should have a
total capacitance of no more than 500pF to ensure that the 5–10K pull-up resistor is able
to drive them to a high voltage level in a reasonable time.

An external PS/2 mouse port uses a mini-DIN-6 connector with the following pinout
(male connector view):

1 PS/2 DATA

2 N/C

3 Ground 0V

4 Power +5V

5 PS/2 CLK

6 N/C

Figure 3-1. PS/2 cable pinout

On the Synaptics Standard PS/2 TouchPad module TM41Pxx134, the 8-pin FFC
connector has the following pinout:

1 2 3 4 5 6 7 8

Power
+5V

PS/2
DATA

PS/2
CLK

Right
Switch

Left
Switch

Ground
0V N/C N/C

Figure 3-2. PS/2 module connector pinout

2 1

4 3

6 5

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.1 Page 28

The button switch inputs (pins 4 and 5) include pull-ups to +5V on the module, and
should be grounded when the corresponding switch is closed (pressed).

Pins 7 and 8 of the 8-pin connector are reserved for future use; they should be left
unconnected by the host.

The following diagram shows the interconnections between the host and the Synaptics
PS/2 TouchPad module:

Figure 3-3. PS/2 system diagram

3.1.1. Connector pinouts
Figure 3-2 showed the pinout of the 8-pin connector for the TM41Pxx134 board.
Synaptics also offers a variety of other board types each with its own connector and
pinout.

The “Ultra-Thin” TouchPad TM41Pxx220 uses either a six- or a twelve-pin connector:

1 2 3 4 5 6

CLK DATA Left Sw Right Sw Ground +5V

1 2 3 4 5 6 7 8 9 10 11 12

CLK DATA Left Switch Right Switch Ground +5V

Figure 3-4. PS/2 UltraThin module connector pinouts

The “Mini” TouchPad TM41Pxx156 uses a six-pin connector:

1 2 3 4 5 6

Ground CLK DATA +5V Left Sw Right Sw

Figure 3-5. PS/2 Mini module connector pinout

The “SubMini” TouchPad TM41Pxx140 uses a twelve-pin connector:

1 2 3 4 5 6 7 8 9 10 11 12

Gnd Left Switch +5V DATA CLK Right Switch Gnd

Figure 3-6. PS/2 SubMini module connector pinout

~10KΩ

CLK
DATA

Synaptics TouchPad Host Computer

Left

Right

CLK
DATA

GND GND

+5V +5V

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.2 Page 29

3.2. Byte transmission
Each byte transmitted between the device and the host includes a start bit (a logic 0),
eight data bits (LSB first), a parity bit (odd parity), and a stop bit (a logic 1). Odd parity
means the eight data bits and the parity bit together contain an odd number of 1’s.
During transmission, the device pulses the CLK signal low for each of the 11 bits, while
the transmitting party (either the host or the device) pulls the DATA wire low to signal a
logic 0 or allows DATA to float high to signal a logic 1.

Between transmissions, the bus can be in one of three states:

• Idle. If CLK and DATA are both high, there is no activity on the bus.

• Inhibit. If the host is holding CLK low, the device is inhibited from transmitting
data. However, internal TouchPad processing continues to occur.

• Request to send. If the host is holding DATA low and allowing CLK to float
high, the host is ready to transmit a command or argument byte to the device.

3.2.1. Output to host
The device can transmit a byte to the host whenever the bus is idle. The device cannot
transmit if the bus is inhibited or in the request-to-send state.

If the bus is inhibited, the device waits for the bus to leave the inhibit state before
transmitting. The device is guaranteed to wait at least 50µs after the inhibition ends
before pulling CLK low to begin the start bit. (The device may wait considerably longer
before beginning its transmission; the host’s raising of the CLK wire is not a command to
the device to begin transmission, but rather a signal that the device is now allowed to
transmit as soon as it is ready to do so.)

If the bus is in the host request-to-send state, the device discards its pending transmission
and receives and processes the host command or argument byte. (The one exception is
the Resend ($FE) command, which responds by resending the most recent transmission
even if that transmission was interrupted by the Resend command itself.)

The device transmits a byte of data by pulsing CLK low and then high a total of 11 times,
while transmitting the start bit, data bits, parity bit, and stop bit on the DATA wire. The
host is expected to sample the DATA wire each time the CLK wire is low; the device
changes the state of the DATA wire during the CLK high period.

If the host inhibits the bus by holding CLK low for at least 100µs during a device
transmission, the device will recognize this and abort the transmission. The device
recognizes an inhibit by noting that the CLK wire remains low during the high portion of
the clock cycle. If the inhibit occurs before the rising edge of the tenth clock (the parity
bit), the transmission of the byte is cancelled and the device will resend the interrupted
byte as soon as the inhibit is released. (An ACK ($FA) reply to a command or argument
byte is simply thrown away if cancelled, although the command being acknowledged is
not cancelled, nor are the additional response bytes, if any, that follow the ACK.) If the
inhibit begins after the tenth clock, the transmission is considered complete and the host
must accept the transmitted byte.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.2 Page 30

The host may hold CLK low after the transmission, effectively extending clock 11, to
inhibit the device from sending further data while the host processes the transmission.
When the Absolute and Rate mode bits are both 1, the TouchPad reports 6 × 80 = 480
bytes per second, which allows for about 2 milliseconds per byte. Since the waveform
shown in Figure 3-7 takes about one millisecond, the host should inhibit the bus for less
than one millisecond per byte on average in order to achieve the maximum packet rate.

Figure 3-7. PS/2 output waveforms

In Figure 3-7, the CLK signal is low for 30–50µs (t1) and high for 30–50µs (t2) in each
bit cell. DATA will be valid at least 5µs before the falling edge (t3) and at least 5µs after
the rising edge (t4) of the clock. Device actions are shown in black; host actions are in
gray.

3.2.2. Input from host
The host signals its intent to transmit a command or argument byte by holding CLK low
for at least 100µs, then pulling DATA low and releasing CLK, thus putting the bus into
the host request-to-send state. The device checks for this state at least every 10ms (t5).
When the device detects a request-to-send, it pulses CLK low 11 times to receive a byte.
The host is expected to change the DATA line while CLK is low; the device samples the
DATA line while CLK is high. The host can abort the transmission midway through by
holding CLK low for at least 100µs at any time before the eleventh CLK pulse.

After the tenth clock, the device checks for a valid stop bit (DATA line high), and
responds by pulling DATA low and clocking one more time (the “line control bit”). The
host can then hold CLK low within 50µs (t12) to inhibit the device until the host is ready
to receive the reply. If the device finds DATA low during the stop bit, a framing error
has occurred; the device continues to clock until DATA goes high, then sends a Resend
to the host as described in the next section.

Figure 3-8. PS/2 input waveforms

In Figure 3-8, the CLK signal is low for 30–50µs (t6) and high for 30–50µs (t7) in each
bit cell. DATA is sampled when CLK is high, and must be valid no later than 1µs after
the rising edge of the clock (t8 ≥ –1µs, t9 ≥ 0µs). In the line control bit, DATA goes low
at least 5µs before the falling edge (t10) and stays low at least 5µs after the rising edge
(t11) of the clock. Device actions are shown in black; host actions are in gray.

Bit 0Start bit Bit 1 Bit 7 Parity bit Stop bit

CLK 11 CLK 10 CLK 9 CLK 3 CLK 2 CLK 1

Request-to-send Line control Stop bit Bit 7 Bit 1 Parity bitBit 0

CLK 11 CLK 10 CLK 9CLK 2 CLK 1

t2 t1 t4t3

t7t6 t9 t8 t10 t11t5 t12

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.3 Page 31

3.2.3. Acknowledgement of commands
Each command or argument byte produces at least one response byte from the device.
For every command or argument byte except the Resend ($FE) command, the response
always begins with an “Acknowledge” or ACK ($FA) byte. Depending on the command,
the ACK byte may be followed by additional data bytes to make up a complete response.
For the Resend ($FE) command, the response sometimes does not begin with an ACK.

The device responds within 25ms, unless the host prevents it from doing so by inhibiting
the bus. In multi-byte responses, the bytes of the response will be separated by no more
than 20ms. The Reset ($FF) command is an exception, where the $FA and $AA bytes
are separated by up to 500ms of calibration delay. The host must wait for the complete
response to a command or argument before sending another byte. If the host does
interrupt the response from a previous command with a new command, the TouchPad
discards the unsent previous response as described in section 3.2.1.

If the device receives an erroneous input (an invalid command or argument byte, a byte
with incorrect parity, or a framing error), the device sends a Resend ($FE) response to the
host instead of an ACK. If the next input from the host is also invalid, the device sends
an Error ($FC) response. When the host gets an $FE response, it should retry the
offending command. If an argument byte elicits an $FE response, the host should
retransmit the entire command, not just the argument byte.

On many PC’s, the PS/2 port will also report a manufactured $FE response if the device
does not send a response after a suitable timeout, or if the device does not respond to the
request-to-send signal at all. Thus, an apparent $FE response from the TouchPad may
also indicate that the TouchPad has been disconnected from the PS/2 port.

Historical notes:

Parity errors and framing errors are detected properly by current Synaptics TouchPads
(version 4.x and later), but some earlier TouchPads ignored parity and framing errors.
Likewise, earlier TouchPads did no range checking on Set Resolution and Set Sample
Rate argument bytes; modern 4.x TouchPads will reject out-of-range Resolution
arguments but still do no range checking on Sample Rate arguments.

3.3. Power-on reset
At power-on, the PS/2 device performs a self-test and calibration, then transmits the
completion code $AA and ID code $00. If the device fails its self-test, it transmits error
code $FC and ID code $00. This processing also occurs when a software Reset ($FF)
command is received. The host should not attempt to send commands to the device until
the calibration/self-test is complete.

Power-on self-test and calibration takes 300–1000ms. Self-test and calibration following
a software Reset command takes 300–500ms. (In the standard Synaptics TouchPad
device, the delays are nominally 750ms and 350ms, respectively.)

The Synaptics TouchPad never sends an $FC power-on/reset error code. Because the
calibration algorithm is designed to adapt to environmental conditions rather than signal a
hard failure, the power-on/reset response is always $AA, $00.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.3 Page 32

Officially, the host must not attempt to communicate with a PS/2 device until the device
has sent the power-on $AA, $00 announcement. For convenience, Synaptics TouchPads
allow the host to put the bus into the “request-to-send” state immediately after powering
up the TouchPad. The TouchPad will respond by clocking in the host’s first initialization
command as soon as it is ready; this command will override and discard the $AA, $00
announcement. The power-on calibration proceeds as usual, but in the background. If
the host sends a Reset ($FF) command before the initial $AA, $00 announcement, then
the $AA, $00 response to the Reset command may be delayed by the full 300–1000ms
required for power-on calibration.

See section 2.6.5 for further comments on the TouchPad calibration process.

The reset state of the device is as follows:

• Reported sample rate is 100 samples per second (see page 34).

• Reported resolution is 4 counts per mm (see page 35).

• Scaling is 1:1.

• Stream mode is selected.

• Data reporting is disabled.

• Absolute mode is disabled.

Note that only the Absolute bit of the TouchPad mode byte is cleared by a Reset ($FF) or
Set Defaults ($F6) command. The other seven bits of the TouchPad mode byte are
initialized to $00 only at power-on; these bits are preserved by the Reset and Set Defaults
commands.

On rare occasions, the TouchPad may experience a spurious reset, often due to a power
supply brownout or an electrostatic discharge (ESD). If this happens, the pad will mostly
reset itself as if after a power-on reset. If data reporting was enabled before the spurious
reset, the TouchPad will attempt to come up re-enabled and without an $AA, $00
announcement so that the host does not experience an interruption of service. However,
any other PS/2 settings or TouchPad mode byte settings will be lost. In particular, note
that a spurious reset will cause the pad to spontaneously revert from Absolute to Relative
mode. If the host notices the pad spontaneously reverting to the Relative mode packet
format, it should reinitialize the pad in the same manner as at power-up.

Historical notes:

In older (version 3.x and earlier) TouchPads, the Reset command cleared the Absolute
mode bit as described above, but the Set Defaults command did not affect any of the
mode bits.

In very old 2.x TouchPads, the initial $AA, $00 announcement at power-on was omitted.
(These pads transmitted $AA, $00 only in response to a Reset command.)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.4 Page 33

3.4. Command set
The Synaptics TouchPad accepts the full standard PS/2 “mouse” command set. This
section describes the full set of standard mouse commands, along with any special
properties of those commands as they are implemented on the Synaptics TouchPad.

If the device is in Stream mode (the default) and has been enabled with an Enable ($F4)
command, then the host should disable the device with a Disable ($F5) command before
sending any other command. However, if the host does send a command during enabled
Stream mode, the device abandons any data packet or previous command response that
was being transmitted at the time of the command; the device will not send any further
data packets until the response to the new command is finished.

As elsewhere in this document, “$” signifies hexadecimal notation.

$FF Reset. Perform a software reset and recalibration as described in section
3.3 above. Response is ACK ($FA), followed by $AA, $00 after a
calibration delay of 300–500ms.

$FE Resend. The host sends this command when it detects invalid output from
the device. The device retransmits the last packet of data, for example, a
three- or six-byte motion data packet, a one-byte response to the Read
Device Type ($F2) command, or the two-byte completion-and-ID reset
response ($AA, $00). The ACK ($FA) byte sent to acknowledge a
command is not stored in any buffer or resent; however, if the last output
from the device was an ACK with no additional data bytes, Resend
responds with an ACK.

 The device will send a Resend ($FE) to the host if it receives invalid input
from the host; see section 3.2.3.

$F6 Set Defaults. Restore conditions to the initial power-up state. This resets
the sample rate, resolution, scaling, and Stream mode to the same states as
for the Reset ($FF) command, and disables the device. This command
disables Absolute mode, but it leaves the rest of the TouchPad mode byte
unaffected.

$F5 Disable. Disable Stream mode reporting of motion data packets. All other
device operations continue as usual.

$F4 Enable. Begin sending motion data packets if in Stream mode. To avoid
undesirable bus contention, driver software should send the Enable as the
very last command in its PS/2 initialization sequence.

 Note that a PS/2 device includes two distinct state bits: the enable/disable
flag controlled by commands $F4 and $F5, and the Stream/Remote flag
controlled by commands $EA and $F0. These two flags are independent,
and both must be set properly (enabled, Stream mode) for the device to send
motion packets. The intention is that disabled Stream mode means the host
is not interested in motion packets, while Remote mode means the host

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.4 Page 34

plans to poll explicitly for motion data. In practice, Remote mode and
disabled Stream mode are identical in the Synaptics TouchPad.

$F3 Set Sample Rate. Followed by one argument byte, this command sets the
PS/2 “sample rate” parameter to the specified value in samples per second.
Legal values are 10, 20, 40, 60, 80, 100, and 200 (decimal) samples per
second.

 The Set Sample Rate command is a two-byte command. The command
byte and argument byte each receive an ACK ($FA) from the device. Thus,
a complete Set Sample Rate = 10 command consists of $F3 from the host,
$FA from the device, $0A from the host, and $FA from the device.

 The Synaptics TouchPad records the sample rate argument and will respond
properly to a later Status Request ($E9) command, but this value does not
actually affect TouchPad data reporting. Stream mode reporting occurs at
either 40 or 80 samples per second, and is controlled by the Rate bit of the
TouchPad mode byte; see section 2.5.

$F2 Read Device Type. The response is an ACK ($FA) followed by a $00
device ID byte.

$F0 Set Remote Mode. Switch to Remote mode, as distinct from the default
Stream mode. In Remote mode, the device sends motion data packets only
in response to a Read Data ($EB) command.

$EE Set Wrap Mode. Switch into special “echo” or “Wrap” mode. In this
mode, all bytes sent to the device except Reset ($FF) and Reset Wrap Mode
($EC) are echoed back verbatim.

$EC Reset Wrap Mode. If the device is in Wrap mode, it returns to its previous
mode of operation, except that Stream mode data reporting is disabled. If
the device is not in Wrap mode, this command has no effect.

$EB Read Data. The device replies with an ACK ($FA) followed by a three- or
six-byte motion data packet as described below in section 3.6. This
command is meant to be used in Remote mode (see command $F0), though
it also works in Stream mode. In Remote mode, this command is the only
way to get a data packet. The packet is transmitted even if no motion or
button events have occurred. The host can poll as often as PS/2 bus
bandwidth allows, but since the underlying motion data are updated only 40
or 80 times per second (according to the Rate bit; section 2.5), there is little
point in polling more often than that.

$EA Set Stream Mode. Switch to Stream mode, the default mode of operation.
In this mode, motion data packets are sent to the host whenever finger
motion or button events occur and data reporting has been enabled.
Maximum packet rate is governed by the current TouchPad sample rate,
described below.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.4 Page 35

 Stream mode is the recommended way to use a Synaptics TouchPad; nearly
all PC-compatible computers operate their pointing devices in Stream
mode.

$E9 Status Request. Response is an ACK ($FA), followed by a 3-byte status
packet consisting of the following data:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 0 Remote Enable Scaling 0 Left Middle Right

Byte 2 0 0 0 0 0 0 Resolution

Byte 3 Sample rate

Figure 3-9. Standard status request response

Remote: 1 = Remote (polled) mode, 0 = Stream mode.
Enable: 1 = Data reporting enabled, 0 = disabled. This bit only has

effect in Stream mode.
Scaling: 1 = Scaling is 2:1, 0 = scaling is 1:1. See commands $E6 and

$E7 below.
Left: 1 = Left button is currently pressed, 0 = released.
Middle: 1 = Middle button is currently pressed, 0 = released.
Right: 1 = Right button is currently pressed, 0 = released.
Resolution: The current resolution setting, from 0 to 3 as described

under Set Resolution ($E8) below.
Sample rate: The current sample rate setting, from 10 to 200 as

described under Set Sample Rate ($F3) above.

 For example, after Reset or Set Defaults, a Status Request command will
return the bytes

 $FA $00 $02 $64

 indicating no buttons pressed, Stream mode, Disabled mode, Scaling 1:1,
Resolution $02, and Sample rate $64 = 100 decimal.

 The Status Request command returns different data in the context of a
TouchPad special command sequence; see section 3.5 below.

$E8 Set Resolution. Followed by one argument byte, this command sets the
PS/2 “resolution” parameter. Legal argument values are $00, $01, $02, and
$03, corresponding to resolutions of 1, 2, 4, and 8 counts per mm,
respectively.

 The Synaptics TouchPad records the resolution argument and will respond
properly to a later Status Request ($E9) command, but this value does not
actually affect TouchPad data reporting. Sections 2.3.2, 2.4.2, and 3.6.1
describe the actual resolution reported by the TouchPad.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.5 Page 36

$E7 Set Scaling 2:1. Sets the PS/2 “scaling” bit, to enable a non-linear motion
gain response. The Synaptics TouchPad records this value and will respond
properly to a later Status Request ($E9) command, but this value does not
actually affect TouchPad data reporting.

$E6 Set Scaling 1:1. Clears the PS/2 “scaling” bit, as described above.

other If the device receives an invalid command byte, it replies with a Resend
($FE) byte. If it immediately receives a second invalid command, it replies
with an Error ($FC) byte.

3.5. TouchPad special command sequences
The standard PC BIOS does not allow system software to send arbitrary command bytes
to a PS/2 pointing device. In fact, the BIOS supports only a subset of the commands
listed in section 3.4. In order to be compatible with the BIOS, the Synaptics PS/2
TouchPad must express all TouchPad-specific information queries and other operations
using only combinations of those commands which are supported by the BIOS. These
combinations of commands are called special command sequences; they are designed to
be relatively concise while still being distinctive enough so that non-Synaptics-aware
drivers will not accidentally activate them.

Each TouchPad special command sequence consists of four Set Resolution ($E8)
commands which together encode an 8-bit argument value, followed immediately by a
Set Sample Rate ($F3) or Status Request ($E9) command. If the final command is not
preceded by exactly four Set Resolution commands, it has only its usual effect as
described in section 3.4 (either setting the sample rate or producing a standard status
report; note that neither the “resolution” nor the “sample rate” controlled by these PS/2
commands actually affect the Synaptics TouchPad’s pointing behavior). When sending a
special command sequence, it is wise to precede the sequence with an “inert” command
such as Disable or Set Scaling 1:1 just in case the most recent command sent to the
device happened to be a (fifth) Set Resolution.

The four Set Resolution commands encode an 8-bit argument by concatenating their
individual 2-bit “resolution” arguments. If the four commands are

 $E8 rr $E8 ss $E8 tt $E8 uu

where rr, ss, tt, and uu are numbers in the range $00–$03, then the full 8-bit argument for
the special command sequence is

 (rr × 64) + (ss × 16) + (tt × 4) + uu.

3.5.1. Information queries
If a Status Request ($E9) command is preceded by four Set Resolution commands
encoding an 8-bit argument, then the 3-byte packet that is returned takes a special form
where the three bytes encode special information chosen by the 8-bit argument. In many
cases the middle byte (normally the current resolution from $00 to $03) is replaced by a

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.5 Page 37

constant $47 byte which can be used to verify that the special command sequence was
recognized.

The 8-bit argument selects one of the following queries:

$00 Identify TouchPad. See section 2.4.1. The first byte of the response is the
minor version number infoMinor. The middle byte is the constant $47. The
third byte encodes the major version number infoMajor in the low 4 bits,
and the (obsolete) infoModelCode in the upper 4 bits.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 infoMinor

Byte 2 0 1 0 0 0 1 1 1

Byte 3 infoModelCode infoMajor

Figure 3-10. PS/2 Identify TouchPad response

 All TouchPads ever shipped by Synaptics have supported the Identify
TouchPad query. To check whether a PS/2 pointing device is a Synaptics
TouchPad, send four Set Resolution 0 commands followed by a Status
Request command,

 $E8 $00 $E8 $00 $E8 $00 $E8 $00 $E9

 and look at the second byte of the three-byte Status response. If the second
byte is $47, the device is a Synaptics TouchPad. For non-Synaptics
devices, the second byte will instead report the current resolution ($00).

$01 Read TouchPad Modes. See section 2.4.5. The first two bytes of the
response are the constants $3B and $47, respectively, and the third byte is
the TouchPad mode byte.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 0 0 1 1 1 0 1 1

Byte 2 0 1 0 0 0 1 1 1

Byte 3 Mode byte (Figure 2-14)

Figure 3-11. PS/2 Read Modes response

 Historical note: On pre-4.x TouchPads, the first byte reported “mode
byte 1” as described in section 7.1.1.

$02 Read Capabilities. See section 2.4.4. The first and third byte hold the
extended capability bits; the second byte is the constant $47.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.5 Page 38

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Capability bits 15–8 (Figure 2-13)

Byte 2 0 1 0 0 0 1 1 1

Byte 3 Capability bits 7–0 (Figure 2-13)

Figure 3-12. PS/2 Read Capabilities response

 Historical note: On pre-4.x TouchPads, this query returned the Edge
Motion margin adjustment factors instead of capability bits. The
adjustment factors were $55, $55 by default; starting at version 3.2, these
bytes were no longer adjustable and were fixed at $55, $55.

$03 Read Model ID. See section 2.4.2. The three response bytes hold the
24-bit TouchPad model ID. Model ID bit 8 (the least significant bit of the
second byte) is always 0 in this protocol.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Model ID bits 23–16 (Figure 2-7)

Byte 2 Model ID bits 15–8 (Figure 2-7) 0

Byte 3 Model ID bits 7–0 (Figure 2-7)

Figure 3-13. PS/2 Read Model ID response

 Historical note: TouchPads prior to version 3.2 did not support the Model
ID query. Those pads returned $47 in the second byte of the response to
query number $03. Also, non-Synaptics devices will return $03 in the
second byte of this query. Hence, host software can check for the presence
of model ID information by examining the least significant bit of the second
byte: That bit will be 0 if model ID information is present, or 1 if the
information is not present. See the historical notes at the end of section
2.4.2 for suitable default model ID information to use when this query is not
supported.

$06 Read Serial Number Prefix. This query returns the first twelve bits (bits
35–24) of the TouchPad’s unique serial number. See section 2.4.5; note
that the pads currently produced by Synaptics do not yet include serial
numbers. The bits shown as “—” in the figure are reserved and hold
undefined data.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Serial Number bits 31–24

Byte 2 Serial Number bits 35–32 — — — —

Byte 3 — — — — — — — —

Figure 3-14. PS/2 Serial Number Prefix response

 Historical note: This query is supported only in versions 4.x and later of
Synaptics TouchPads. Also, bits 35–24 are guaranteed to be not all zero in

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.5 Page 39

a valid serial number, and are all zero for unserialized TouchPads. The host
should attempt the Serial Number Prefix query only if infoMajor ≥ 4, and it
should consider the serial number to be valid only if this query returns non-
zero data for bits 35–24.

$07 Read Serial Number Suffix. This query returns the remaining 24 bits of
the serial number. The results from this query are undefined if the Serial
Number Prefix query returned zero for bits 35–24.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Serial Number bits 23–16

Byte 2 Serial Number bits 15–8

Byte 3 Serial Number bits 7–0

Figure 3-15. PS/2 Serial Number Suffix response

$08 Read Resolutions. See section 2.4.3. This query returns the X and Y
coordinate resolutions in Absolute units per millimeter. The second byte of
the response is undefined except for the most significant bit, which is
guaranteed to be 1.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 infoXupmm

Byte 2 1 — — — — — — —

Byte 3 infoYupmm

Figure 3-16. PS/2 Read Resolutions response

 Historical note: This query is supported only in some 4.x versions of the
Synaptics TouchPad. The host should only issue this query if
infoMajor ≥ 4; also, the result should only be considered valid if bit 7 of
byte 2 of the response is 1 and the infoXupmm and infoYupmm bytes are
both non-zero.

other For any other value of the 8-bit argument, the values of the three result
bytes are undefined.

Historical notes:

In versions before 3.2, the Synaptics TouchPad recognized one additional special
command sequence which was used by some mouse drivers to identify three-button mice.
This sequence was supported to allow use of a standard mouse driver with a TouchPad
that had been configured by other means to set the “3-button” mode bit. In practice, this
feature was never used (and the “3-button” bit has been discontinued); thus, to avoid
confusion, version 3.2 and later no longer recognize this command sequence. Therefore,
non-Synaptics drivers now recognize the TouchPad as a generic two-button mouse.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.6 Page 40

3.5.2. Mode setting sequence
If a Set Sample Rate 20 ($F3, $14) command is preceded by four Set Resolution
commands encoding an 8-bit argument, the 8-bit argument is stored as the new value for
the TouchPad mode byte as described in section 2.5 and Figure 2-14.

For example, to set the mode byte to $C1 (Absolute mode, high packet rate, Wmode
enabled) one would use the sequence of commands,

 $E8 $03 $E8 $00 $E8 $00 $E8 $01 $F3 $14

where the argument $C1 is encoded as follows:

 ($03 × 64) + ($00 × 16) + ($00 × 4) + $01 = $C1.

All ten command and argument bytes receive the usual ACK ($FA) acknowledgments.
Note that, as described at the beginning of section 3.4, it is important to ensure that the
device is disabled ($F5) before sending this command sequence; to receive Absolute
mode packets, follow this sequence with an Enable ($F4) command.

Historical notes:

Older Synaptics TouchPads supported up to four mode bytes; the sequences to set those
bytes ended with Set Sample Rate commands with arguments other than $14. On the
present (4.x) TouchPad, sequences of four Set Resolution commands followed by a Set
Sample Rate with any argument other than $14 have an undefined effect on the TouchPad
and should not be used.

Some older Synaptics TouchPads also supported a second way to read or write the mode
byte using PS/2 command code $E1. See section 7.1.2.

3.6. Data reporting
The Synaptics TouchPad supports two formats for motion data packets. The default
Relative format is compatible with standard PS/2 mice. The Absolute format gives
additional information that may be of use to TouchPad-cognizant applications.

Data packets are sent in response to Read Data ($EB) commands. If Stream mode is
selected and data reporting is enabled, data packets are also sent unsolicited whenever
finger motion and/or button state changes occur. Synaptics recommends using Stream
mode instead of Read Data commands to obtain data packets.

During transmission of a motion packet, the individual bytes of the packet will be
separated by no more than 20ms (assuming the host does not inhibit the bus). While PS/2
motion packets are lacking in explicit synchronization bits, if the host sees a delay of
more than 20ms between bytes it can assume the delay comes at a packet boundary.

3.6.1. Default packet format
In the default Relative format, each motion packet consists of three bytes. The first byte
encodes various status bits, and the other two bytes encode the amount of motion in X
and Y that has occurred since the previous packet.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.6 Page 41

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Y ovfl X ovfl Y sign X sign 1 Middle Right Left

Byte 2 X delta

Byte 3 Y delta

Figure 3-17. PS/2 relative motion packet

Y ovfl: 1 = Y delta value exceeds the range –256…255, 0 = no overflow. When
this bit is set, the reported Y delta will be either –256 or +255.

X ovfl: 1 = X delta value exceeds the range –256…255, 0 = no overflow. When
this bit is set, the reported X delta will be either –256 or +255.

Y sign: 1 = Y delta value is negative, 0 = Y delta is zero or positive.

X sign: 1 = X delta value is negative, 0 = X delta is zero or positive.

Middle: 1 = Middle button is currently pressed, 0 = released.

Right: 1 = Right button is currently pressed, 0 = released.

Left: 1 = Left button is currently pressed (or gesture in progress), 0 = released.

X delta: This is the amount of motion ∆X that has occurred in the X (horizontal)
direction since the last motion data report. This byte and the “X sign” bit of
byte 1 combine to form a nine-bit signed, two’s-complement integer.
Rightward motion is positive, leftward is negative.

Y delta: This is the amount of motion ∆Y that has occurred in the Y (vertical)
direction. Upward motion is positive, downward is negative.

Note that the three button state bits reflect a combination of physical switch inputs and
gestures. The “left button” bit is set if either the left physical switch is closed, or a tap or
drag gesture is in progress. (If the DisGest mode bit is set, then the “left button” bit
reports only the state of the physical left switch.) The “right button” bit is set only if the
right physical switch is closed. Because standard Synaptics TouchPads only support two
buttons, the “middle button” bit is always zero.

The X and Y deltas report an accumulation of all motion that has occurred since the last
packet was sent, even if host inhibition has prevented packet transmission for some time.
Also, any host command except Resend ($FE) clears the motion accumulators, discarding
any motion that had occurred before the command but that had not yet been sent in a
packet.

The X and Y deltas have a resolution of about 240 DPI on a standard Synaptics pad; see
section 2.6.3 for further details.

3.6.2. Absolute packet format
When Absolute mode is enabled, each motion report consists of six bytes. These bytes
encode the absolute X, Y location of the finger on the sensor pad, as well as the Z

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.6 Page 42

(pressure) value and various other measurements and status bits. Section 2.3 discusses
the contents of the Absolute mode packet in great detail.

Modern PS/2 TouchPads support two different Absolute packet formats, depending on
the setting of the Wmode bit of the TouchPad mode byte (section 2.5). Some very old
TouchPads actually use a different packet format; see the historical notes below.

Note that if the Absolute and Rate mode bits are both set, then the TouchPad transmits up
to 480 bytes per second over the PS/2 port. The PS/2 protocol in principle has plenty of
bandwidth available to transmit data at this rate, provided the host takes care not to
inhibit the bus for too long between bytes. See section 3.2.1 for further information.

The Absolute X/Y/Z packet format when Wmode = 0 is shown in Figure 3-18:
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 1 0 Finger Reserved 0 Gesture Right Left

Byte 2 Y position 11..8 X position 11..8

Byte 3 Z pressure 7..0

Byte 4 1 1 Y pos 12 X pos 12 0 Gesture Right Left

Byte 5 X position 7..0

Byte 6 Y position 7..0

Figure 3-18. PS/2 absolute X/Y/Z motion packet (Wmode = 0)

Note that the Gesture, Left, and Right bits appear twice in the Absolute packet. These
bits are guaranteed to be identical in bytes 1 and 4 for a given packet. This and other
aspects of the packet design allow low-level host software to interpret an Absolute packet
as a sequence of two mouse-compatible three-byte packets; as high-level host software
receives these three-byte half-packets, it can examine the upper two bits of the first byte
to determine how to combine consecutive half-packets into full six-byte packets.

The Absolute X/Y/Z/W packet format when Wmode = 1 is shown in Figure 3-19:
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 1 0 W value 3..2 0 W val 1 Right Left

Byte 2 Y position 11..8 X position 11..8

Byte 3 Z pressure 7..0

Byte 4 1 1 Y pos 12 X pos 12 0 W val 0 R/D L/U

Byte 5 X position 7..0

Byte 6 Y position 7..0

Figure 3-19. PS/2 absolute X/Y/Z/W motion packet (Wmode = 1)

In this packet, the four-bit “W” value replaces the Finger and “reserved” bits and both
Gesture bits. All other bits of the packet remain the same regardless of the Wmode
setting. Section 2.3.4 describes the various purposes and interpretations of the W value.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.7 Page 43

On normal pads, the L/U bit is identical to the Left button bit, and the R/D bit is identical
to the Right bit. On “MultiSwitch” pads with the capFourButtons capability bit set (see
section 2.4.4) and Wmode enabled, the L/U and R/D bits also report the states of the Up
and Down buttons, respectively. The L/U bit reports the logical XOR of the Left and Up
button states. Viewed another way, L/U is the same as the Left bit, unless the Up button
is pressed, in which case L/U is the complement of the Left bit. The R/D bit similarly
reports the XOR of the Right and Down buttons. This encoding ensures that the packet
will be backward compatible (and robust against meddling by “smart” keyboard
controllers) whenever the Up and Down buttons are not pressed.

Historical notes:

Some version 3.2 and earlier TouchPads used an older, incompatible Absolute packet
format. The infoNewAbs bit in the Model ID query response shows which packet format
is in use; infoNewAbs is 1 for pads which use the format shown in the above figures, and
0 for pads which use the old format shown in Figure 3-20:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 1 1 Z pressure 7..6 Second Gesture Right Left

Byte 2 Finger 0 0 X position 12..8

Byte 3 X position 7..0

Byte 4 1 0 Z pressure 5..0

Byte 5 Reserved 0 0 Y position 12..8

Byte 6 Y position 7..0

Figure 3-20. Old-style PS/2 absolute motion packet (infoNewAbs = 0)

This old packet format, which lacked the duplicate copy of the gesture and switch bits in
byte 4, was susceptible to interference from certain types of low-level host software that
try to interpret incoming PS/2 data as mouse-style Relative packets before they reach the
high-level driver software. The new packet format contains the same bits as the old
format, but rearranged to minimize the impact of meddling by low-level software. (The
“Second” bit of Figure 3-20, for reporting “secondary” gestures, corresponds to a feature
that has now been discontinued.)

3.7. PS/2 implementations
The next two sections describe two implementations of the host side of the PS/2
interface. On standard PC-compatible computers, the keyboard controller chip is
responsible for PS/2. On other types of systems, it may be necessary to implement the
PS/2 host interface in system software; section 3.7.2 shows the source code for such an
implementation.

3.7.1. The keyboard controller
On a standard PC, the keyboard controller (KBC) chip implements the host side of the
PS/2 interface. Host software can operate the TouchPad without any regard to (or

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.7 Page 44

awareness of) the PS/2 protocol at the level of the CLK and DATA signals. Section 2.6.6
discusses the role of the KBC in general terms.

A good reference book for the KBC is chapter 8 of Frank van Gilluwe’s The
Undocumented PC. As described in that book, the interface to the KBC takes the form of
two I/O ports and an interrupt vector. The host can read I/O port 64h to check the status
of the KBC’s input and output buffers. The host can write to port 64h to send a
command to the KBC. The KBC commands include A7h, which inhibits the pointing
device by holding CLK low; A8h, which de-inhibits the pointing device; and D4h, which
causes the next data byte written to I/O port 60h to be sent to the mouse as a command or
argument byte.

When the pointing device sends a byte, the KBC raises the IRQ 12 interrupt to notify the
host. The byte is then available to be read from input port 60h; various bits of input port
64h tell whether a byte is available in port 60h, and whether this byte came from the
keyboard or pointing device.

In principle, the KBC is a simple conduit for bytes going between the device and the
higher-level host software. In practice, some KBCs differ from this ideal in various
ways. Writers of PC software that interfaces directly with the KBC should be aware of
these known quirks:

• As described in section 3.2.3, the KBC expects a response byte for every byte sent
to the device. If the KBC times out waiting for the device to acknowledge the
“request to send” condition, or if it times out waiting for the ACK byte to arrive,
then the KBC will invent an $FE response and report it to the host as if the device
had actually sent an $FE.

• The KBC may test for the presence of a pointing device at boot time and shut down
the PS/2 port if no device is found. So, if a PS/2 device is hot-plugged onto a
computer which was booted with no PS/2 device present, the computer may need to
be rebooted in order for the device to be recognized.

• Some KBCs will only send the PS/2 commands listed in section 3.4 to the pointing
device; for “invalid” commands, the KBC will reject the command locally rather
than sending it to the mouse to be rejected. This is one reason why the TouchPad
special commands (section 3.5) are disguised as sequences of valid section 3.4
commands.

• Some KBCs attempt to merge two or more active PS/2 devices on the same port.
Thus, when a host sends a command to “the device,” the KBC forwards the
command to both devices. When either device sends a motion packet to the host,
the KBC forwards it to the host as a new packet from “the device.” If both devices
try to talk simultaneously, the KBC must buffer up the data bytes so that the host
will see a sequence of coherent three-byte packets with no interleaving. Hence,
under some conditions, a byte sent by a device may not reach the host immediately.

• If the KBC merges two PS/2 devices, and the user holds down the mouse button on
device #1 and then moves both devices at once, the host would receive alternating
packets with the button pressed (from device #1) and released (from device #2),

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.7 Page 45

which would lead to undesirable false clicking. So, the KBC sometimes edits the
mouse button bits. For example, device #2’s packets would be edited to report a
button pressed even though device #2 itself thinks no buttons are pressed. In order
to accomplish this feature, the KBC must keep a count of all the bytes it transfers to
the host so that it knows which bytes hold button data. That is why the TouchPad’s
Absolute packet format (Figure 3-18) is exactly six bytes long with duplicate
button data every three bytes.

• Some KBCs will edit bit 3 of the first byte of each three-byte packet. Hence,
neither the Relative nor the Absolute packet formats store useful information in this
bit. Even though this bit is documented as always 1 or always 0, the bit may be
different as seen by high-level host software.

3.7.2. Sample PS/2 implementation
The Synaptics TouchPad can also be used in appliances, handheld devices and other
special applications where the KBC and other facilities of the standard PC are not
present. In such applications, you may need to implement the PS/2 host-side interface
yourself. This section presents a sample C-language implemention of the PS/2 host
interface.

These routines depend on the following functions, which you must define suitably for
your environment.

typedef unsigned char byte; /* All data values are 8-bit bytes. */
extern byte read_CLOCK(); /* Return state of clock pin, 0 or 1. */
extern byte read_DATA(); /* Return state of data pin, 0 or 1. */
extern void set_CLOCK(byte); /* Pull clock pin low (0) or let it float high (1). */
extern void set_DATA(byte); /* Pull data pin low (0) or let it float high (1). */
extern void wait_us(byte); /* Wait a number of microseconds (approx). */
extern void PS2_error(); /* This gets called in case of error. */

Figure 3-21. PS/2 support functions

The PS2_error function is a stand-in for error handling suitable to the application; in
some cases, it may suffice to ignore error checking altogether.

The following function waits for a high or low level on the PS/2 clock pin. In a real
application, this function should time out and call PS2_error if the desired clock level
does not appear after some amount of time (such as 25ms).

1 void wait_CLOCK(byte state)
2 {
3 while (read_CLOCK() != state) /* Do nothing */ ;
4 }

Figure 3-22. PS/2 wait_CLOCK function

To read a byte from the PS/2 device, use the following function:

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.7 Page 46

1 byte PS2_get()
2 {
3 byte i, bit, value = 0, p = 0;
4 set_CLOCK(1); /* Release inhibit, if necessary. */
5 wait_CLOCK(0); /* Wait for start bit clock. */
6 wait_CLOCK(1); /* End of start bit clock. */
7 for (i = 0; i < 8; i++) {
8 wait_CLOCK(0); /* Wait for clock pulse. */
9 bit = read_DATA(); /* Read data bit from pin. */
10 value = value + (bit << i);
11 p = p + bit; /* Accumulate data bit into parity. */
12 wait_CLOCK(1); /* Wait for end of clock pulse. */
13 }
14 wait_CLOCK(0); /* Parity bit clock. */
15 p = p + read_DATA(); /* Accumulate parity bit into parity. */
16 if ((p & 0x01) == 0) /* Check for odd parity. */
17 PS2_error(); /* Parity error! */
18 wait_CLOCK(1); /* End of parity bit clock. */
19 wait_CLOCK(0); /* Stop bit clock. */
20 if (read_DATA() == 0) /* Check for valid stop bit. */
21 PS2_error(); /* Framing error! */
22 set_CLOCK(0); /* Pull low during stop bit to inhibit. */
23 wait_us(50); /* Wait out the final clock pulse. */
24 return value;
25 }

Figure 3-23. Receiving PS/2 data from the TouchPad

The PS2_get function reads one byte from the TouchPad, as shown in Figure 3-7 on
page 30. If the TouchPad is not ready to transmit, the wait_CLOCK call at line 5 will
wait until it is. If you wish to do other things while waiting, release the inhibit as shown
in line 4, then check the clock pin periodically (at least every 20µs or so) or using
interrupts, and call PS2_get as soon as the clock goes low.

Line 22 inhibits the bus as soon as the byte is received; this is the recommended way to
use the PS/2 bus. Note the 50µs wait in line 23, to make sure the device has finished the
last clock pulse before returning; otherwise, an immediately following call to PS2_get
might mistake the tail end of this stop bit as the beginning of a new start bit.

Lines 11 and 15–17 check the parity of the received byte; lines 20–21 check for framing
errors. You can omit these lines if you don’t want to check for transmission errors.

To send a byte to the PS/2 device, use the following function:

1 void PS2_send(byte value)
2 {
3 byte i, ack, p = 1;
4 set_CLOCK(0); /* Begin inhibit, if necessary. */
5 wait_us(100); /* Inhibit for about 100us. */
6 set_DATA(0); /* Hold data pin low while still inhibited. */
7 set_CLOCK(1); /* Establish “request-to-send” state. */

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.7 Page 47

8 for (i = 0; i < 8; i++) {
9 wait_CLOCK(0); /* Wait for clock pulse. */
10 set_DATA(value & 0x01); /* Output i’th data bit. */
11 p = p + value; /* Accumulate parity. */
12 wait_CLOCK(1); /* Wait for end of clock pulse. */
13 value = value >> 1; /* Shift right to get next bit. */
14 }
15 wait_CLOCK(0); /* Parity bit clock. */
16 set_DATA(p & 0x01); /* Output parity bit. */
17 wait_CLOCK(1); /* End of parity bit clock. */
18 wait_CLOCK(0); /* Stop bit clock. */
19 set_DATA(1); /* Stop bit must be 1. */
20 wait_CLOCK(1); /* End of stop bit clock. */
21 wait_CLOCK(0); /* Line control bit clock. */
22 if (read_DATA() == 1)
23 PS2_error(); /* Missing line control bit! */
24 wait_CLOCK(1); /* End of line control bit clock. */
25 ack = PS2_get(); /* Receive acknowledge byte from device. */
26 if (ack != 0xFA)
27 PS2_error(); /* Probably got an FE or FC error code. */
28 }

Figure 3-24. Sending PS/2 data to the TouchPad

See Figure 3-8 on page 30. The PS2_send function first inhibits the bus for at least
100µs; this ensures that any transmission the device may have begun will be cancelled
before it collides with the host’s transmission. (If you leave the bus inhibited at all times
between PS2 calls, it is safe to skip lines 4 and 5.)

Next, the function asserts a “request-to-send” and releases the inhibit signal. The device
will respond within 10ms by clocking in a start bit, data bits, parity bit, and stop bit.
Lines 3, 11 and 16 are responsible for sending a proper parity bit; note that while some
older Synaptics TouchPads ignored parity, the current TouchPad does check for parity
errors so it is essential for the host to transmit a correct parity bit.

Line 25 calls PS2_get to receive the $FA acknowledge byte. It is okay to move steps
25–27 out of the PS2_send function, but in this case you should make PS2_send
inhibit the bus before returning; this forces the device to wait until you are ready to
receive the acknowledge byte.

If there are asynchronous interrupts on your system that take more than a few
microseconds to service, you should disable them inside the PS2_get and PS2_send
routines. Once a transmission has begun, timing is critical and not under the host’s
control.

For the TouchPad special command sequences described in section 3.5, the following
helper function is useful. It sends an 8-bit argument encoded as a sequence of four Set
Resolution commands.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.7 Page 48

1 void send_tp_arg(byte arg)
2 {
3 byte i;
4 for (i = 0; i < 4; i++)
5 PS2_send(0xE8);
6 PS2_send((arg >> (6-2*i)) & 3);
7 }

Figure 3-25. PS/2 send_tp_arg function

Lines 5 and 6 send Set Resolution commands with arguments consisting of bits 7–6, 5–4,
3–2, and 1–0 of arg, respectively, as i counts from 0 to 3.

As described in section 3.3, the device will send an $AA, $00 announcement 300–
1000ms after power-up. However, it is safe to send your first PS/2 command before this
time if you don’t care about the $AA, $00. (The proper clocking and acknowledgement
of the first command serves just as well as the $AA, $00 to verify that the TouchPad is
present and running.) It is still a good idea to wait until 300ms after power-up before
talking to the device. Note that the host should be prepared to wait up to 1000ms after
power-up for the device to respond to the first request-to-send, although the current
Synaptics TouchPad responds much sooner. Also note that the official PS/2 specification
states that the host must not send to the device until after the $AA, $00 announcement, so
the host must wait if it expects to be used with devices other than Synaptics TouchPads.

Here is a typical sequence to initialize the TouchPad and enable Stream mode using the
Absolute data format of Figure 3-18.

1 PS2_send(0xFF); /* Reset command. */
2 if (PS2_get() != 0xAA) /* Note: This may need an extra-long timeout. */
3 PS2_error();
4 if (PS2_get() != 0x00)
5 PS2_error();
6 send_tp_arg(0x00); /* Send “Identify TouchPad” sequence (section 3.5.1). */
7 PS2_send(0xE9); /* Status Request command. */
8 minor = PS2_get(); /* First status byte: TouchPad minor rev. */
9 if (PS2_get() != 0x47) /* Second status byte: 0x47 == Synaptics TouchPad. */
10 PS2_error();
11 major = PS2_get() & 0x0F; /* Third status byte: Major rev in low 4 bits. */
12 send_tp_arg(0x80); /* Send “Set Modes” sequence (see section 3.5.2). */
13 PS2_send(0xF3); /* Set Sample Rate command. */
14 PS2_send(0x14); /* Sample Rate argument of 20. */
15 PS2_send(0xF4); /* Enable command. */
16 enable_interrupt_handler(); /* Ready to receive data. */
17 set_CLOCK(1); /* Release PS/2 bus inhibit. */

Figure 3-26. PS/2 initialization sequence

Lines 1–5 perform a Reset command. If this initialization sequence is used only right
after power-up, lines 1–5 are not strictly necessary since Reset merely restores the power-
up defaults.

Lines 6–11 perform the “Identify TouchPad” query using a special command sequence.
This query tells you that you do indeed have a Synaptics TouchPad attached and not
some other pointing device.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §3.7 Page 49

Lines 12–14 enable Absolute mode by setting bit 7 of mode byte 2. A more elaborate
initialization sequence would enable W mode (bit 0) as well if the TouchPad identifies
itself as supporting that mode. You can also enable the high packet rate (bit 6), though
the higher rate will cause the host to spend a significant fraction of its time in the
PS2_get routine whenever the finger is on the pad.

Line 15 sends an Enable command, which enables the transmission of finger motion
packets (actually position/pressure packets in Absolute mode). The device won’t actually
transmit a packet yet, since PS2_send and PS2_get leave the bus inhibited.

Lines 16 and 17 assume the host will operate the TouchPad in an interrupt-driven Stream
mode. Line 16 stands for whatever steps are necessary to enable interrupts when the PS/2
clock pin goes low. Line 17 ends the inhibit signal. (If the interrupts are level-sensitive,
these steps will have to be done in the opposite order.)

The interrupt handler installed by line 16 should respond to a low clock signal by calling
PS2_get to receive the byte. Note that the start bit is only 30–50µs long, so the interrupt
latency must be small. If you need to disable interrupts at certain times, be sure the PS/2
bus is inhibited (by holding the clock wire low) during these times.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.1 Page 50

4. Serial Protocol
The Synaptics Serial TouchPad communicates with the host via a standard RS-232
interface or “COM port.” In the default (Relative) mode, the TouchPad uses a protocol
fully compatible with the Microsoft serial mouse. The Serial TouchPad offers all the
same features as the PS/2 TouchPad, though the commands and packet formats are
different.

Although Synaptics has manufactured true Serial-only TouchPads in the past, all new
Serial-capable pads are actually “Combo” devices which support both the Serial and the
PS/2 protocols. In PS/2 mode, the Combo pad acts exactly the same as a PS/2-only pad
as described in section 3 of this Guide. (The connector pinout is different, however; see
below.)

4.1. Electrical interface
The RS-232C interface includes receive and transmit signal wires RxD and TxD plus a
set of control signals. Of the control signals, the Serial TouchPad uses only RTS and
DTR. RS-232 signals operate at high voltages and are logically inverted: A logic “0”
corresponds to a voltage between +5V and +15V, and a logic “1” corresponds to a
voltage between –5V and –15V relative to ground. (On a typical portable computer, the
serial port operates at ±6V or ±12V; for concreteness, the following text will use ±12V.)

Serial pointing devices use the RS-232 control wires in an unconventional way in order to
avoid the need for an external power supply. First, RTS and DTR, which are at –12V at
boot time, are switched to +12V by the mouse driver. The device uses a voltage regulator
to derive its +5V power supply from RTS and/or DTR. Second, RxD, which is at –12V
as long as the host is not transmitting anything, is used as the negative power supply for
generating negative voltages on the TxD wire. A side effect is that the device is unable to
transmit reliably to the host when the host itself is transmitting. Fortunately, the host
does not need to transmit to the device in normal operation.

The serial port on a portable computer typically uses a DB-9 connector as follows
(female connector view):

1 DCD Not used

2 TxD Transmit to host

3 RxD Receive from host

4 DTR Power supply 5–15V

5 GND Ground 0V

6 DSR Plug-and-play signal

7 RTS Power supply / Reset

8 CTS Not used

9 RI Not used

Figure 4-1. Serial connector pinout

2345 1

789 6

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.1 Page 51

On the Synaptics Standard Combo TouchPad module TM41Bxx134, the 8-pin FFC
connector has the following pinout:

1 2 3 4 5 6 7 8

DTR
/ DATA TxD RxD Right

Switch
Left

Switch
Ground

0V
CTS
/ +5V

RTS
/ CLK

Figure 4-2. Combo module connector pinout

The button switch inputs (pins 4 and 5) include pull-ups to +5V on the module, and
should be grounded when the corresponding switch is closed (pressed).

The Combo TouchPad module should be wired to a DB-9 female connector; the signals
TxD, RxD, DTR, RTS, CTS, and GND should be wired between the two connectors as
indicated in Figures 4-1 and 4-2. To support plug-and-play, DTR and DSR should be
wired together on the connector. The DB-9 connector can be plugged directly into a
computer’s RS-232 port for Serial TouchPad operation. (Note that the CTS pin must be
wired from pin 8 of the DB-9 connector to pin 7 of the module connector, even though
the CTS signal is marked “not used” in Figure 4-1. The CTS wire will be unused when
operating in Serial mode but it is needed to supply power in PS/2 mode.)

The following diagram shows the interconnections between the host Serial port and the
Synaptics Combo TouchPad module:

Figure 4-3. Serial system diagram

In order to use the Combo TouchPad with a PS/2 port, an adapter or converter cable is
used between the TouchPad’s Serial connector and the host’s PS/2 port. The adapter has
a male DB-9 connector on one end and a male DIN-6 connector on the other. The
adapter may separate the DB-9 and DIN-6 connectors with a short length of cable, or the
two connectors may be encased in a molded plastic block. The DB-9 and DIN-6
connectors are wired in the adapter as follows:

RxD
TxD

Synaptics TouchPad
Host Computer

Left

Right RxD
TxD

RTS RTS
DTR

DSR
DTR

GND GND

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.1 Page 52

DIN-6 (PS/2) DB-9 (Serial)

1 PS/2 DATA !" 4 DTR

2 N/C — —

3 Ground 0V !" 5 Ground 0V

4 Power +5V !" 8 CTS

5 PS/2 CLK !" 7 RTS

6 N/C — —

Figure 4-4. Serial-to-PS/2 adapter

The following diagram shows the interconnections between the host PS/2 port and the
Synaptics Combo TouchPad module:

Figure 4-5. PS/2 system diagram with Combo module

Historical notes:

Some older Synaptics TouchPad models supported the Serial protocol only; they
connected to the host RS-232 port by the same DB-9 connector shown in Figure 4-1, but
the firmware programmed on the module did not recognize the PS/2 protocol; hence,
there was no way to build a PS/2 adapter comparable to Figure 4-4 for those modules.
The Serial-only module had the same connector pinout as shown in Figure 4-2, except
that pin 7 was a no-connect instead of CTS (since CTS is wired on the Combo module
only to support the PS/2 adapter).

Note that in this Guide, the phrase “Serial TouchPad” refers equally to a Serial-only pad
or to a Combo pad operating in Serial mode. The phrase “Serial-only TouchPad” refers
specifically to a non-Combo Serial pad.

RTS
DTR

Synaptics TouchPad Host Computer Adapter

Left

Right

CLK

GND

DATA

GND

CTS +5V

2 1

4 3

6 5

2 3 4 51

7 8 96

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.1 Page 53

4.1.1. TTL-level Serial TouchPad
Synaptics is also able to manufacture TouchPads which use the RS-232 serial protocol
but with all signals operating at TTL voltage levels. TxD and RxD are non-inverted, so
that logic “0” is 0V and logic “1” is +5V. Non-inverted signals are suitable for
connecting directly to a UART without an intervening level-shifter chip. Either or both
signals can be inverted as a firmware compile-time option. This “TTL-level Serial” pad
is not a part of Synaptics’ standard product line, but it is available by special
arrangement.

The TTL-level Serial firmware can run on the same standard Synaptics TouchPad module
used for PS/2 devices. On the standard TM41Txx134 module, the 8-pin FFC connector
has the following pinout:

1 2 3 4 5 6 7 8

Power
+5V TxD RxD Right

Switch
Left

Switch
Ground

0V N/C N/C

Figure 4-6. TTL-level Serial standard module connector pinout

Similarly, on other module types, the PS/2 DATA pin becomes the RS-232 TxD pin, and
the PS/2 CLK pin becomes the RS-232 RxD pin. The RxD pin should be tied to a logic
“1” if it is not used.

Note that the pinout shown above does not involve RTS or DTR, and thus the TTL-level
Serial TouchPad will not obey the “M” protocol that allows a standard serial mouse
driver to recognize it. For full emulation of a serial mouse, you must arrange for the
TouchPad to receive +5V power only when the serial port’s RTS signal is a logic “0”.
One possible solution is shown here:

Figure 4-7. TTL-level Serial system diagram with RTS support

Since the Synaptics TouchPad draws only a few milliamps, a digital inverter easily serves
as its power source. The resistor (about 1K) on the TouchPad’s RxD line is to prevent
excessive current draw in case the host’s RTS and TxD outputs are both “1” at the same
time. (If the host can guarantee not to let that happen, the resistor is unnecessary. If the
host microprocessor has an output pin capable of sourcing enough milliamps to drive the
TouchPad directly, it can dispense with the inverter. In fact, if the host does not care
about using the RTS handshake to identify the pad as a “mouse,” then the TouchPad’s
+5V pin can simply be connected to the regular +5V power supply.)

RxD
TxD

Synaptics TouchPad
Host Computer

Left

Right RxD
TxD

+5V RTS

DSR
DTR

GND GND

1KΩ

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.2 Page 54

4.2. Byte transmission
Data transmission works the same in either direction. The signal wire (TxD or RxD)
normally rests at a logic “1” level (negative voltage). To send a byte, the transmitter
sends a “0” start bit, seven data bits (LSB first), and one or more “1” stop bits. (Since the
wire rests at “1”, the stop bits can be thought of as an inter-byte delay measured in bit
times.) The length of each bit cell is determined by the baud rate, in bits per second.

For the Synaptics TouchPad, the serial port is set to 1200 or 9600 baud, 7 data bits, and
no parity. The default baud rate at power-up is 1200 baud. The device transmits with
two stop bits and can receive with one or more stop bits (two stop bits are recommended).

In the following example, the bytes $25 and $43 (hexadecimal) are sent at 1200 baud
with two stop bits. Each bit cell is 1/1200 second = 833µs.

Figure 4-8. Serial TxD or RxD waveform

The receiver typically samples each bit in the middle of the bit cell, synchronized by the
falling edge of the start bit. The transmitter’s and receiver’s baud rate generators must be
precise enough to ensure that the receiver’s sampling point will not have drifted out of
the bit cell by the time the stop bit arrives. Hence, the TouchPad’s transmit baud rate will
be accurate to within ±2%, and the host should be comparably accurate. A framing error
occurs if the receiver finds a zero when it expects a stop bit. When the TouchPad detects
a framing error, it treats the received byte as invalid and cancels any command in
progress.

It is also possible to send a break signal by holding the transmit wire at a logic “0”
(a positive voltage) for at least 9 bit times. The Synaptics TouchPad treats a received
break signal like an invalid command byte; the TouchPad never sends a break signal.

4.3. Power-on reset
To apply power to a Serial TouchPad, first set the DTR signal to a positive voltage and
RTS to a negative voltage. Then wait at least 100ms without transmitting any bytes or
break signals. Finally, bring RTS positive while holding DTR also positive. The
TouchPad will send a $4D (ASCII “M”) announcement byte to identify itself as a
standard serial pointing device. The announcement byte is sent at 1200 baud, and the
start bit occurs within 30ms after the time at which RTS goes positive.

Note that the device may detect power-on either by drawing its power directly from RTS,
or by drawing power from DTR and using RTS as a hardware or software reset signal. In
any case, the host must hold DTR positive whenever it holds RTS positive, and the host
must hold both DTR and RTS positive whenever it transmits command bytes to the
device.

… Stop … Stop Start Start 1 0 0 0 0 1 1 0 1 0 0 1 0 1
0 = +12V
1 = −12V

833µs ≥ 1667µs

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.3 Page 55

The host can reset the device at any time by pulsing RTS negative for at least 100ms.
This procedure is known as the “RTS handshake.” When RTS goes positive again after
the handshake, the device will send the announcement byte “M” and all TouchPad
parameters will return to their power-up default states. In particular, the TouchPad mode
byte (section 2.5) will reset to $00.

After the RTS handshake, the Combo TouchPad determines the type of protocol by
looking at the RxD wire. In Serial mode, RxD will be held negative by the host (because
the host is not transmitting to the TouchPad). In PS/2 mode, RxD will be unconnected
and will float to 5V due to the design of the Combo circuit. Thus, to ensure that the
device correctly identifies the protocol at power-on, it is imperative for Serial hosts to
refrain from transmitting to the device until they receive the “M” announcement, and for
PS/2 adapters to leave the RxD pin unconnected.

If the pad supports Plug-and-Play, then the “M” announcement is followed by a separator
string, then by a Plug-and-Play ID string. In modern Serial TouchPads, the separator
string consists of the bytes $40 $00 $00 $00. Mouse drivers unaware of Plug-and-Play
will interpret this as a harmless zero-motion packet; without the separator, mouse drivers
would interpret the “M” and the first two bytes of the Plug-and-Play ID as a motion
packet when the device is hot-plugged.

The Plug-and-Play ID string itself is a sequence of characters whose ASCII character
codes are offset by subtracting $20. (For example, the character “(“ is encoded as the
byte $08.) The Plug-and-Play ID takes the form,

(v v S Y N 0 0 0 1 \ \ M O U S E \ P N P 0 F 0 C \ T O U C H P A D c c)

where vv represents two version number bytes, and cc represents a two-digit checksum.
Note that the separator and Plug-and-Play ID string are subject to change by Synaptics.
For further information, see the Plug and Play External COM Device Specification,
available from Microsoft.

After sending the initial “M”, the device does a self-test and calibration taking 300–
1000ms. However, the device begins watching RxD immediately after sending “M”. If
the device receives host commands or other input during the initial calibration, the device
may restart the calibration as soon as the commands are finished. Finger motion
processing will not begin until the calibration is complete. See section 2.6.5 for more
information about power-on calibration.

On rare occasions, the TouchPad may experience a spurious reset, often due to a power
supply brownout or an electrostatic discharge (ESD). If this happens, the pad will reset
itself as if after a power-on reset, and all TouchPad mode byte settings will be lost. In
particular, note that a spurious reset will cause the pad to spontaneously revert from
Absolute to Relative mode and from 9600 baud to 1200 baud. If the host notices the pad
spontaneously reverting to 1200 baud Relative mode (usually characterized by a series of
framing errors if the host UART was set to 9600 baud), then the host should reinitialize
the pad in the same manner as at power-up.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.4 Page 56

Historical notes:

Some older Serial TouchPads transmitted a two-byte announcement consisting of a
$4D (“M”) and a $33 (“3”); this identified the pad to certain non-Synaptics drivers as a
three-button mouse. Since the current TouchPad does not support or emulate a third
button, the current TouchPad announces itself as an ordinary two-button mouse.

4.4. Command set
The host can send a command to the TouchPad at any time. Any motion packets or
responses that were being transmitted by the TouchPad are cancelled and lost. Each
command consists of a “%” character (ASCII code $25), a command letter, and
optionally several argument characters. The device ignores invalid commands; in
particular, between commands it ignores all characters except for “%”.

4.4.1. Serial command timing
Commands, their arguments, and the TouchPad’s replies are always transmitted at 1200
baud (even if data reporting is set to 9600 baud). The characters of a command with its
arguments must be separated by no more than 50ms (t1); characters of a motion packet or
reply will be separated by at most 25ms (t3, t5). The device responds to valid commands
after no less than 25ms and no more than 50ms (t2). After processing a command and
sending the response, the device waits at least 50ms before it resumes sending motion
packets (t4). The time between two characters is measured from the beginning of the first
stop bit to the beginning of the subsequent start bit.

Figure 4-9. Serial command timing

Because the device uses RxD as a power supply for generating TxD, the device may send
spurious data when the host transmits on RxD. Therefore, the host should ignore all
input from the device while sending commands and preferably for 5–20ms thereafter (t6).
(This is safe since the device does not reply for at least 25ms after a command.)

The host can set the baud rate for motion data packets to 1200 or 9600 baud. In 9600
baud mode, the host must switch its UART back to 1200 baud before sending a
command. The host can take advantage of the 50ms post-command delay to reconfigure
the UART cleanly. To send a command while in 9600 baud mode, the host can send an
invalid byte such as NUL ($00) or a break signal; the device will ignore the byte as a
command, but it will still abort any transmission in progress and wait 50ms before
transmitting another packet. The host thus has 50ms of quiet time to switch the UART to
1200 baud and send the “%” character. After the command is finished, there will be
another 50ms lull during which the host can set the UART back to the desired baud rate.

x x x x x T S

A %

Packet Response

t2

25ms ≤ t2 ≤ 50ms t4 ≥ 50ms t5 ≤ 25ms t3 ≤ 25ms t1 ≤ 50ms

 t6TxD

RxD

t1

Command

t5 t5 t4 t3 t3 t3

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.4 Page 57

4.4.2. Identify TouchPad command
To identify a Synaptics TouchPad, send the command “%A”. The response will be four
bytes identifying the TouchPad and reporting its version number.

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Send 1 $25 “%”

Send 2 $41 “A”

Receive 1 $53 “S”

Receive 2 $54 “T”

Receive 3 infoModelCode infoMajor

Receive 4 infoMinor

Figure 4-10. Serial Identify TouchPad response

Note that the infoMajor and infoMinor fields are each one bit shorter than their PS/2
counterparts (compare to Figure 3-10).

To identify an unknown serial device as a Synaptics Serial TouchPad, first perform the
“RTS handshake” described in section 4.3 and check for an “M” response. Then, send
the “%A” query and check for an “ST” response followed by two version bytes. If the
device fails to respond to the RTS handshake, it is not a mouse-compatible pointing
device. (In this case, the host should not try a “%A” query since the “%A” characters
may have an unknown effect on a non-pointing serial device.) If the device responds to
the RTS handshake but not to the “%A” query, then it is a non-Synaptics pointing device.

4.4.3. Read TouchPad Modes command
To read the current TouchPad modes and capabilities, send the command “%B”. The
response will be eight hexadecimal digits encoding four bytes of data including the
constant “3B”, the mode byte (Figure 2-14 of section 2.5), and the capability bits (Figure
2-13 of section 2.4.4). Each digit is a character from “0” to “9” ($30 to $39) or from “A”
to “F” ($41 to $46).

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.4 Page 58

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Send 1 $25 “%”

Send 2 $42 “B”

Receive 1 $33 “3”

Receive 2 $42 “B”

Receive 3 Mode byte, bits 7–4 (hex digit)

Receive 4 Mode byte, bits 3–0 (hex digit)

Receive 5 Capability bits 15–12 (hex digit)

Receive 6 Capability bits 11–8 (hex digit)

Receive 7 Capability bits 7–4 (hex digit)

Receive 8 Capability bits 3–0 (hex digit)

Figure 4-11. Serial Read TouchPad Modes response

Historical notes:

On pre-4.x TouchPads, the first two digits reported “mode byte 1” as described in section
7.1.1, and the last four digits reported the Edge Motion margin adjustment factors instead
of the capability bits. The margin adjustment factors were “5555” by default; starting at
version 3.2, these bytes were no longer adjustable and were fixed at “5555”.

4.4.4. Set TouchPad Modes command
To change the TouchPad mode byte, send the command “%C” followed by eight
hexadecimal digits encoding the mode byte as shown below. Each digit is a character
from “0” to “9” ($30 to $39) or from “A” to “F” ($41 to $46). Only upper-case letters are
accepted. If “%C” is followed by less than eight digits, or if any of the digits are invalid,
the entire command is rejected and the mode byte is not changed.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.4 Page 59

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Send 1 $25 “%”

Send 2 $43 “C”

Send 3 $33 “3”

Send 4 $42 “B”

Send 5 Mode byte, bits 7..4 (hex digit)

Send 6 Mode byte, bits 3..0 (hex digit)

Send 7 $35 “5”

Send 8 $35 “5”

Send 9 $35 “5”

Send 10 $35 “5”

Figure 4-12. Serial Set TouchPad Modes command

See Figure 2-16 of section 2.5 for a list of suitable values for the mode byte on a Serial
TouchPad.

The first two, and last four, argument digits are ignored by current TouchPads. For
compatibility with older and future Synaptics TouchPads, host software may either use
the values shown in Figure 4-12 (“3B” and “5555”, respectively), or echo the same
values reported by a recent “%B” command in the corresponding digit positions.

Historical notes:

On pre-4.x TouchPads, the first two argument digits set “mode byte 1” as described in
section 2.5, and the last four digits set the Edge Motion margin adjustment factors.

4.4.5. Read Model ID command
To read the model ID as described in Figure 2-7 of section 2.4.2, send the command
“%D”. The response will be six hexadecimal digits encoding the three model ID bytes.
Each digit is a character from “0” to “9” ($30 to $39) or from “A” to “F” ($41 to $46).

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.4 Page 60

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Send 1 $25 “%”

Send 2 $44 “D”

Receive 1 Model ID, bits 23–20 (hex digit)

Receive 2 Model ID, bits 19–16 (hex digit)

Receive 3 Model ID, bits 15–12 (hex digit)

Receive 4 Model ID, bits 11–8 (hex digit)

Receive 5 Model ID, bits 7–4 (hex digit)

Receive 6 Model ID, bits 3–0 (hex digit)

Figure 4-13. Serial Read Model ID response

Historical notes:

In Synaptics TouchPads prior to version 3.2, the model ID bytes were not implemented;
the “%D” command had no effect and produced no response from the TouchPad. To
determine whether a TouchPad supports the model ID query, send a “%D” and then wait
to see if there is a reply within 50ms consisting of six valid hexadecimal digits.
(Alternatively, simply check the version number and omit the model ID query for pads
older than 3.2.)

4.4.6. Read Serial Number command
To read the serial number as described in section 2.4.5, send the commands “%G” and
“%H”. The response to each command will be six hexadecimal digits encoding three
bytes of data.

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Send 1 $25 “%”

Send 2 $44 “G”

Receive 1 Serial Number, bits 31–28 (hex digit)

Receive 2 Serial Number, bits 27–24 (hex digit)

Receive 3 Serial Number, bits 35–32 (hex digit)

Receive 4 Reserved (hex digit)

Receive 5 Reserved (hex digit)

Receive 6 Reserved (hex digit)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.4 Page 61

Send 1 $25 “%”

Send 2 $44 “H”

Receive 1 Serial Number, bits 23–20 (hex digit)

Receive 2 Serial Number, bits 19–16 (hex digit)

Receive 3 Serial Number, bits 15–12 (hex digit)

Receive 4 Serial Number, bits 11–8 (hex digit)

Receive 5 Serial Number, bits 7–4 (hex digit)

Receive 6 Serial Number, bits 3–0 (hex digit)

Figure 4-14. Serial Read Serial Number responses

If the “%G” command returns “000” for bits 35–24 of the serial number, or if “%G”
returns no response, then the device is unserialized and the result, if any, of the “%H”
command is undefined. The values of the final three response digits of the “%G”
command are undefined in any case.

Historical notes:

In Synaptics TouchPads prior to version 4.x , the serial number was not implemented; the
“%G” and “%H” commands had no effect and produced no response from the
TouchPad. All 4.x and later TouchPads support the “%G” query, though as of this
writing Synaptics had not begun serializing TouchPads and so the “%G” response was
always “000” in the first three digits.

4.4.7. Read Resolutions command
To read the coordinate resolutions as described in section 2.4.3, send the command “%I”.
The response will be six hexadecimal digits encoding the X and Y resolutions in
Absolute units per millimeter, plus a middle byte with undefined data.

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Send 1 $25 “%”

Send 2 $44 “I”

Receive 1 infoXupmm, bits 7–4 (hex digit)

Receive 2 infoXupmm, bits 3–0 (hex digit)

Receive 3 Reserved (hex digit)

Receive 4 Reserved (hex digit)

Receive 5 infoYupmm, bits 7–4 (hex digit)

Receive 6 infoYupmm, bits 3–0 (hex digit)

Figure 4-15. Serial Read Resolutions response

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.5 Page 62

Historical notes:

In Synaptics TouchPads prior to version 4.5, the resolution bytes were not implemented;
the “%I” command had no effect and produced no response from the TouchPad. To
determine whether a TouchPad supports the resolution query, send a “%I” and then wait
to see if there is a reply within 50ms consisting of six valid hexadecimal digits.
(Alternatively, simply check the version number and omit the resolution query for pads
older than 4.5.)

4.5. Data reporting
The Synaptics TouchPad supports two formats for motion data packets. The default
Relative format is compatible with Microsoft and Logitech serial mice. The Absolute
format gives additional information that may be of use to TouchPad-cognizant
applications.

4.5.1. Default packet format
In the default Relative format, each motion report consists of three bytes. Reports are
sent whenever finger motion and/or button state changes occur.

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 1 Left Right Y delta 7..6 X delta 7..6

Byte 2 0 X delta 5..0

Byte 3 0 Y delta 5..0

Figure 4-16. Serial relative motion packet

Left: 1 = Left button is currently pressed (or gesture in progress), 0 = released.

Right: 1 = Right button is currently pressed, 0 = released.

X delta: The two fields in bytes 1 and 2 combine to form an eight-bit signed, two’s-
complement integer ∆X representing the amount of horizontal motion since
the last data packet. Rightward motion is positive, leftward is negative.

Y delta: The two fields in bytes 1 and 3 combine to form an eight-bit signed, two’s-
complement integer ∆Y representing the amount of vertical motion since
the last data packet. Downward motion is positive, upward is negative.

The X and Y deltas have a resolution of about 240 DPI on a standard Synaptics pad; see
section 2.6.3 for further details.

Historical notes:

Some older TouchPads were capable of simulating a “middle” mouse button using
advanced gestures. The Relative packet would grow to four bytes to report middle button
activity. Because Synaptics TouchPads no longer support advanced gestures in Relative
mode, the Relative packet is now exclusively a three-byte packet.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §4.5 Page 63

4.5.2. Absolute packet format
When Absolute mode is enabled, each motion report consists of six, seven, or eight bytes.
These bytes encode the absolute X, Y location of the finger on the sensor pad, as well as
the Z (pressure) value and various other measurements and status bits. Section 2.3
discusses the contents of the Absolute mode packet in great detail.

The Absolute packet size is controlled by the PackSize and Wmode bits of the TouchPad
mode byte (section 2.5).

PackSize Wmode Packet size

0 0 Six bytes (bytes 7 & 8 omitted)

0 1 Reserved

1 0 Seven bytes (byte 8 omitted)

1 1 Eight bytes

Figure 4-17. Serial absolute packet sizes

The full eight-byte Absolute packet is arranged as follows. Note that with Wmode = 0,
the W value is not present, and with PackSize = 0, the least significant bits of X and Y,
the least significant two bits of Z, and the Down and Up bits are also not present.

 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 1 Reserved Gesture Finger Left Middle Right

Byte 2 0 X position 12..7

Byte 3 0 X position 6..1

Byte 4 0 Y position 12..7

Byte 5 0 Y position 6..1

Byte 6 0 Z pressure 7..2

Byte 7 0 Down Up Y pos 0 X pos 0 Z pressure 1..0

Byte 8 0 Reserved W value 3..0

Figure 4-18. Serial absolute motion packet

The “Middle” bit reports the state of the physical middle mouse button; since all current
Synaptics pads support just two buttons, this bit is always zero.

The “Down” and “Up” bits report the states of the extra two buttons on “MultiSwitch”
pads with the capFourButtons capability bit set. On pads for which capFourButtons is
clear, these bits are reserved.

Bits marked reserved may be reported as 0 or 1 by the TouchPad, and should be ignored
by the host.

The host should always set the pad to 9600 baud mode (the Baud bit of the mode byte
should be 1) when operating the pad in Absolute mode. (At 1200 baud, the pad would
transmit only 20 packets per second and the reported data might not be very accurate.)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.1 Page 64

5. ADB Protocol
The Apple Desktop Bus protocol is used by Apple Macintosh pointing devices and other
peripherals. The ADB bus allows for bidirectional communication between a host
computer and up to 16 peripheral devices on a single shared bus wire.

The Synaptics ADB TouchPad identifies itself as a mouse device on the bus, and in its
default mode is fully compatible with Apple mice. The ADB TouchPad offers the same
set of gestures and advanced features as other Synaptics TouchPads.

5.1. Electrical interface
The ADB bus includes one signal wire in addition to +5V power and ground. The signal
wire is a bidirectional “open-collector” signal, normally held at a high (+5V) level by a
470 Ω pull-up resistor on the host. Either the host, the TouchPad device, or any other
device on the bus can pull the wire low at any time. However, in ADB, all transactions
are initiated by the host.

An external ADB port uses a mini-DIN-4 connector with the following pinout (male
connector view):

1 ADB Signal

2 Power-on

3 Power +5V

4 Ground 0V

Figure 5-1. ADB cable pinout

The “power-on” pin is not used by pointing devices, and should be left unconnected.

The Synaptics ADB firmware can run on the same standard Synaptics TouchPad module
used for PS/2 devices. On the standard TM41Axx134 module, the 8-pin FFC connector
has the following pinout:

1 2 3 4 5 6 7 8

Power
+5V N/C ADB

Signal N/C Button
Switch

Ground
0V N/C N/C

Figure 5-2. ADB standard module connector pinout

Similarly, on other module types, the PS/2 CLK pin becomes the ADB Signal pin, the
Left Switch pin becomes the sole button switch pin, and the PS/2 DATA and Right
Switch pins are not connected by the host.

The button switch input includes a pull-up to +5V on the module, and should be
grounded when the button switch is closed (pressed).

1 2

3 4

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.2 Page 65

The following diagram shows the interconnections between the host and the Synaptics
ADB TouchPad:

Figure 5-3. ADB system diagram

5.2. Byte transmission
The ADB protocol is amply described in various Apple publications, such as the Guide to
the Macintosh Family Hardware, second edition (Addison Wesley, 1990).

However, please note the following errors and ambiguities in the Guide to the Macintosh
Family Hardware (“GMFH”):

• The stop bit is a “0” bit for both commands and data; in figure 8-13 of the GMFH,
the data stop bit is erroneously shown as a “1”. The low time is 70µs for both stop
bits. While the GMFH refers to the stop bit as a normal bit with a low portion and
an (invisible) high portion, it is most useful to think of the stop bit as consisting
solely of the 70µs low portion.

• In a Service Request, the low portion of the command byte’s stop bit extends to be
300µs ± 30% long. Service Requests occur only on the command stop bit, not on
the data stop bit. A device never asserts a Service Request on a command
addressed to that device.

• The stop-to-start time following the command is measured from the rising edge in
the stop bit, not from the (invisible) end of the stop bit’s high portion as shown in
figure 8-13 of the GMFH. In the case of a Service Request, the stop-to-start time is
measured from the observed rising edge at the end of the Service Request.

• To aid collision detection, the stop-to-start time on a “Talk 3” command is
randomized with a random number generator. This is not necessary for other
“Talk” commands. Also, the device reports a random number in the “address” field
of the “Talk 3” response, rather than its true address.

• In a “Listen” command, the effect of sending fewer argument bytes than the device
expects is undefined. Extraneous “Listen” argument bytes are ignored. The effect
of sending a “reserved” command byte is undefined.

The Synaptics ADB TouchPad follows all of these conventions.

470Ω

GND

+5V

Signal

Synaptics TouchPad Host Computer

Button

GND

+5V

Signal

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.3 Page 66

5.3. Power-on reset
The Synaptics TouchPad is able to respond to ADB bus traffic within 200ms of power-
up. The device’s ADB port is fully functional after this point for as long as power is
applied.

At power-up, the TouchPad mode byte is set to $00. The initial ADB address is 3, and
the initial handler ID is $01. Power-up settings are restored whenever a Global Reset
signal or SendReset command occurs on the ADB bus.

5.4. Command set
The Synaptics TouchPad emulates a standard ADB mouse. It supports the Cursor Device
Manager interface as well as the older 100- and 200-dpi interfaces. It also supports
extensions that allow the host to access the Synaptics TouchPad’s special features.

All ADB devices have four logical registers up to eight bytes in length. The Synaptics
TouchPad supports the usual ADB commands for accessing these registers:

• The “Talk” command reports the current contents of any of the four ADB registers.

• The “Listen” command stores a new value into one of the four registers.

• The “Flush” command clears any pending motion packet, but has no other effect on
the state of the device.

• The “SendReset” command and the “Global Reset” signal reset the device to its
power-up state.

The Synaptics TouchPad treats invalid command codes the same as “Flush” commands.

In the Synaptics TouchPad, the four ADB registers are assigned as follows:

ADB Register Length Contents

0 0–5 Current finger motion packet

1 8 CDM identification

2 8 Synaptics TouchPad mode bytes

3 2 ADB identification

Figure 5-4. ADB Registers

These registers are described in the sections below.

5.4.1. ADB Register 0
This register contains the current finger motion or position data. It has the special
property that it is empty (“Talk 0” does not respond) if there is no motion to report. The
host must poll Register 0 periodically to collect the motion data. The device asserts a
“Service Request” whenever Register 0 becomes full but the host is talking to a different
ADB device. The device continues to assert Service Requests until the host sends a

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.4 Page 67

“Talk 0” to read the new motion data. After a “Talk 0”, Register 0 becomes empty until
further motion occurs.

The Synaptics TouchPad supports three operating modes, each with its own format for
Register 0:

• Non-CDM Relative mode. This is the default mode at power-up; it emulates an
original 100- or 200-dpi ADB mouse.

• CDM Relative mode. This mode was introduced by Apple to allow for uniform
handling of a wider range of pointing devices.

• Absolute mode. In this mode, the Synaptics TouchPad reports the finger’s
absolute position and pressure on the pad.

See sections 5.5.1–5.5.3 below for further details about Register 0.

5.4.2. ADB Register 1
Register 1 contains eight bytes of read-only identification data as described in the CDM
specification. (CDM is described in the Apple technical report, ADB The Untold Story:
Space Aliens Ate My Mouse, January 1994.)

In the Synaptics TouchPad, Register 1 contains the following data:

Byte 1 $53

Byte 2 $79

Byte 3 $6E

Byte 4 $54

Device identifier = 'SynT'

Byte 5 $01

Byte 6 $90

Resolution = 400 dpi

Byte 7 $01 Device class = Mouse

Byte 8 $02 Number of buttons = 2

Figure 5-5. ADB Register 1: CDM identification

While Register 1 is present in all modes, it is mainly applicable to CDM Relative mode.
For example, the resolution is really 400 dpi only in CDM Relative mode.

The number of buttons is reported as 2 to reflect the fact that the physical switch and
gestures are reported as two distinct logical buttons. Unless told otherwise, the CDM
driver software will merge these two buttons into a single button signal as seen by
application programs.

The recommended way to identify a Synaptics ADB TouchPad is to search for a device
with the following properties:

1. The device’s original ADB address was 3 (though collision detection may since
have moved the device to a different address);

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.4 Page 68

2. The handler ID reported by a “Talk 3” command is $01, $02, or $04; and

3. The device responds to a “Talk 1” command with eight bytes, where the first four
bytes are “SynT” as shown in Figure 5-5.

Host software should check each of these items before assuming Register 2 has the
format shown below.

5.4.3. ADB Register 2
This register holds data specific to the Synaptics TouchPad. It contains the TouchPad
version number, the mode byte, and the capability bits.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Command Address $E = “Talk 2”

Byte 1 infoModelCode infoMajor

Byte 2 infoMinor

Byte 3 $3B

Byte 4 Absolute — — — — DisGest — Wmode

Byte 5 Capability bits 15..8

Byte 6 Capability bits 7..0

Byte 7 Model ID bits 23..16

Byte 8 Model ID bits 7..0

Figure 5-6. ADB Register 2: Talk response

Bytes 1 and 2 report the TouchPad version information; see section 2.4.1.

Byte 3 always reports the constant $3B.

Byte 4 is the mode byte, as described in section 2.5. Note that the Rate bit is not
supported since the ADB bus always operates in a polled mode with no fixed report rate.

Bytes 5 and 6 are the extended capability bits, as described in section 2.4.4.

Bytes 7 and 8 are a subset of the model ID bits described in section 2.4.2. Historical
note: In TouchPads prior to version 4.x , bytes 7 and 8 report the model ID only if the
Wmode bit of byte 4 is 1. If the Wmode bit is 0, these bytes return undefined data. Note
that the Wmode bit may be used to obtain model information even on older pads where
“W mode” and the “W” value themselves are not supported; in those cases, the Wmode
bit will have no effect on the register 0 packet format. On very old pads which do not
support model ID information, setting Wmode will have no effect on Register 2, and
bytes 7 and 8 will report as $00, $00.

To change the current TouchPad modes, execute a “Listen 2” command with the eight-
byte argument shown below:

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.4 Page 69

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Command Address $A = “Listen 2”

Byte 1 $FF

Byte 2 $FF

Byte 3 $3B

Byte 4 Absolute — — — — DisGest — Wmode

Byte 5 $55

Byte 6 $55

Byte 7 $00

Byte 8 $00

Figure 5-7. Setting ADB mode byte

Bits shown as “—” in the diagram should be set to zero for compatibility with future
Synaptics TouchPad models.

The TouchPad will accept the Listen 2 command only if the first two arguments bytes are
$FF and the last two argument bytes are $00. Note that a Listen command that simply
echoes the version numbers in the first two bytes will be ignored; this helps to minimize
the risk of unexpected interaction with software that writes to Register 2 thinking it is
configuring a different type of pointing device.

The third, fifth, and sixth Listen argument bytes may either be the constants $3B, $55,
$55 as shown in Figure 5-7, or they can echo the values most recently read in the
corresponding byte positions by a Talk 2 command. Hence, the recommended way to
modify ADB Register 2 is as follows:

1. Execute a Talk 2 command to read the 8-byte contents of Register 2 into a buffer.

2. Modify bytes 1 and 2 to $FF, $FF.

3. Modify bytes 7 and 8 to $00, $00.

4. Modify byte 4 to the desired mode byte value.

5. Execute a Listen 2 command to write the modified buffer back into Register 2.

To read the model ID information, it is necessary to perform this transaction once to set
the Wmode bit, then to perform a second Talk 2 command to read the model ID data in
bytes 7 and 8.

Historical notes:

In older TouchPads, bytes 3–6 of Register 2 reported up to four mode bytes and margin
adjustment parameters. See section 7.1.1 for more information.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.5 Page 70

5.4.4. ADB Register 3
The layout and meaning of Register 3 is fixed for all ADB devices.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 0 1 Enable 0 Device address

Byte 2 Device handler ID

Figure 5-8. ADB Register 3: ADB identification

The Enable bit enables Service Requests from the device; it is 1 (enabled) by default.
The default device address is 3. The default handler ID is $01 (100 dpi mouse), and can
be changed to $02 (200 dpi mouse) or $04 (CDM device) by the host. The special
handler ID codes $00 and $FD–$FF are also supported; for code $FD, the “activator” is
the physical button switch; for code $FF, the self-test command has no effect.

See the ADB specification for further details.

5.5. Data reporting
The TouchPad reports information about finger motion and button state changes in
response to a “Talk 0” command on the ADB bus. The format of the “Talk 0” response
depends on the current TouchPad operating mode.

5.5.1. Default packet format
When the “handler ID” of ADB Register 3 is $01 or $02, the TouchPad responds with a
two-byte motion packet fully compatible with older Apple mouse products.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Button Y delta

Byte 2 1 X delta

Figure 5-9. Non-CDM ADB motion packet

Button: 0 = Button is currently pressed, 1 = released. This bit combines physical
switch and gesture-based button information.

Y delta: This is the amount of motion ∆Y that has occurred in the Y (vertical)
direction since the last motion data packet. This field is a 7-bit signed,
two’s-complement integer. Downward motion is positive, upward is
negative.

X delta: This is the amount of motion ∆X that has occurred in the X (horizontal)
direction. Rightward motion is positive, leftward is negative.

If the handler ID is $01, the ∆X and ∆Y resolution is approximately 100 units per inch.
If the handler ID is $02, the ∆X and ∆Y resolution is approximately 200 units per inch.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.5 Page 71

5.5.2. CDM Relative mode packet format
When the “handler ID” of ADB Register 3 is $04, the TouchPad responds with between
two and five bytes of motion data compatible with Apple’s CDM specification.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Switch Y delta 6..0

Byte 2 Gesture X delta 6..0

Byte 3 1 Y delta 9..7 1 X delta 9..7

Byte 4 1 Y delta 12..10 1 X delta 12..10

Byte 5 1 Y delta 15..13 1 X delta 15..13

Figure 5-10. CDM ADB motion packet

Switch: 0 = Physical button switch is currently pressed, 1 = released.

Gesture: 0 = Gesture is in progress, 1 = no gesture. This bit represents the state of
the “virtual” mouse button controlled by tap-and-drag gestures.

Y delta: This is the amount of motion ∆Y that has occurred in the Y (vertical)
direction since the last motion data packet. This field is a 7-, 10-, 13-, or
16-bit signed, two’s-complement integer. Downward motion is positive,
upward is negative.

X delta: This is the amount of motion ∆X that has occurred in the X (horizontal)
direction. Rightward motion is positive, leftward is negative.

The ∆X and ∆Y resolution, in units per inch, is available from ADB Register 1. In
current devices, the resolution is 400 units per inch.

CDM devices can choose to report anywhere from two to five bytes in each “Talk 0”
response. The most significant reported bit (bit 6, 9, 12, or 15) becomes the sign bit of a
two’s-complement integer of the corresponding size. The device may omit one or more
of the final bytes if both deltas are small enough to be represented correctly in the
remaining bytes. The Synaptics TouchPad uses the shortest packet (two bytes) whenever
possible.

5.5.3. Absolute packet format
When Absolute mode is enabled, the ADB TouchPad always reports five bytes in
Register 0 regardless of the current handler ID. These bytes encode the absolute X, Y
location of the finger on the sensor pad, as well as the Z (pressure) value and various
other measurements and status bits. Section 2.3 discusses the contents of the Absolute
mode packet in great detail.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §5.5 Page 72

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Switch Y position 8..2

Byte 2 Gesture X position 8..2

Byte 3 1 Y position 11..9 1 X position 11..9

Byte 4 1 Y position 14..12 1 X position 14..12

Byte 5 1 Z pressure 7..5 1 Z pressure 4..2

Figure 5-11. ADB Absolute motion packet

Note that the low two bits of each of X, Y, and Z are missing from the ADB Absolute
packet format, as is the Finger bit.

The Switch and Gesture bits are actually controlled by the handler ID even in Absolute
mode: If the handler ID is $04 (CDM mode), then Switch and Gesture are reported as
distinct bits as shown. If the handler ID is $01 or $02, the bit shown as Switch reports a
combination of switch and gesture information, and the bit shown as Gesture always
reports as 1.

The X and Y resolution in Absolute mode is the same as described in section 2.4.3, even
though Register 1 will continue to report a resolution of 400 DPI. (The information
reported in Register 1 applies only to CDM Relative mode, not to Absolute mode.)

The ADB TouchPad will report Absolute mode packets continuously when the finger is
down (i.e., when Z exceeds a suitable internal threshold value). When the finger is up,
the TouchPad reports a single packet with X = Y = Z = 0, then reports no further packets
except for button state changes.

Note: “W” mode is not yet implemented on the ADB version of the Synaptics TouchPad.
Contact Synaptics for more information about this mode.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §6.1 Page 73

6. Driver API
Sections 3 and 4 of this Guide have described the PS/2 and Serial protocols that most
IBM PC-compatible computers use for low-level communication with the TouchPad.
On computers running the Microsoft Windows® operating system, this low-level
communication is normally managed by “mouse” driver software. Application software
talks to the TouchPad hardware only indirectly via the driver.

As shown in Figure 2-19 of section 2.6.6, the Synaptics Windows 95 and NT TouchPad
drivers operate the TouchPad in Absolute X/Y/Z/W mode. But because the Synaptics
drivers are still “mouse” drivers from Windows’ point of view, the Synaptics drivers
normally process X, Y, Z, and W into ∆X, ∆Y, and virtual buttons, effectively acting as if
the TouchPad were in Relative mode.

Working only with the facilities provided by Windows, applications see the TouchPad as
a regular relative-mode mouse. The Synaptics drivers provide a special API (Application
Programming Interface) that applications can use to get the original X, Y, Z, and other
TouchPad-specific information. Applications can use the TouchPad API to take full
advantage of the special abilities of the TouchPad. For example:

• A drawing application could use the TouchPad as a miniature, pressure-sensitive
graphics tablet.

• A game could use the TouchPad as a customized game controller by decoding
special zones or gestures.

• Several of the features and accessories that come with the Synaptics drivers are
really just API applications. These include virtual scroll bars, “stop pointer at
window borders,” the animated tray icon, Pressure Graph, MoodPad, and Sketch.

This section of the Synaptics TouchPad Interfacing Guide will present an introduction to
the TouchPad API. For complete documentation, download the API developer’s kit from
the Synaptics Web site, http://www.synaptics.com.

6.1. API basics
The TouchPad API is a set of C++ classes that can be used in any C++ program. (The
API will soon support access from other languages; contact Synaptics for availability.)

The CTouchPad object represents a connection to a particular TouchPad device. A
computer may have more than one Synaptics TouchPad attached (say, an internal PS/2
TouchPad plus an external Serial TouchPad). By creating several CTouchPad objects, an
application can receive separate and independent position data from each pad. In fact, an
application can create a CTouchPad object for any mouse-compatible pointing device
under control of the Synaptics driver, though if the device is not a Synaptics TouchPad,
the CTouchPad object will only deliver relative motion and button information.

The CTouchPadPacket object represents the state of the TouchPad at a particular instant
in time. The CTouchPadPacket constructor takes a pointer to a CTouchPad object as an
argument; it fills in the CTouchPadPacket object with data reflecting the current state of

http://www.synaptics.com/

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §6.1 Page 74

the indicated TouchPad. By repeatedly constructing CTouchPadPacket objects, an
application can sample X, Y, Z, and other TouchPad data as the finger moves around on
the pad.

More typically, an application would establish a feed from the TouchPad API that causes
the API to notify the application whenever anything “interesting” happens. For example,
the application is notified whenever a new packet of finger data arrives from the pad, and
whenever a TouchPad is plugged in, unplugged, or reconfigured using the Control Panel.

The driver API supports several kinds of feeds:

1. In a normal feed, the driver sends a Windows message (with the message number
of your choice) every time a packet arrives from the pad. The application’s main
event loop can handle these messages just like any other Windows message.
Typically, it would respond by constructing a CTouchPadPacket object and acting
on the packet data in some appropriate way. If the application falls behind
processing the messages, Windows will queue the messages up and play them out
when the application is ready. Each message includes a packet sequence number,
which the CTouchPadPacket constructor uses to find which recent packet to
retrieve.

2. In an interlocked feed, the driver sends Windows messages to your application one
at a time. Your application must acknowledge the receipt of one message before
the driver will send the next. This scheme ensures that the Windows message
queue will not overflow with TouchPad messages. The application can use the
packet sequence numbers to read all the packets that have come in since the last
TouchPad message. Or, the application can read the single latest packet in
response to each message; this will ensure that the application can not drop behind
in packet processing, but at the expense of possibly dropping packets when the
system is busy.

3. It is also possible to dispense with Windows messages altogether and have the API
call a function in your program directly each time a packet arrives. The API will
create a special Win32 thread in your application for handling the TouchPad; your
function will be called in the context of that thread, and it will be called
immediately even if your application’s main thread is busy.

4. A notification feed sends you a Windows message whenever the configuration of
the TouchPad changes in a significant way, for example, when the user changes a
TouchPad-related setting on the Control Panel.

A feed can either “spy” on packets on their way to their regular processing by Windows,
or it can take over the TouchPad and prevent Windows from moving the cursor in
response to finger actions. For example, the “virtual scroll bar” feature of the Synaptics
driver spies on the finger at all times; if it sees the finger come down in the scroll zone of
the pad, it takes over the TouchPad for the duration of the scrolling gesture.

The API also supports reverse feeds, where the application tells the driver to simulate a
mouse packet as if it had arrived from the TouchPad. For example, the virtual scroll bars

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §6.2 Page 75

feature sometimes uses reverse feeds to move the cursor onto the scroll bar, press the
simulated button, and drag the scroll box up and down.

6.2. Information available from the API
Here are some of the many functions that the CTouchPad object offers to describe the
type, capabilities, or current configuration of the TouchPad.

 IsTouchPad Is this device a Synaptics TouchPad?
 GetFWRev The TouchPad/firmware version numbers (section 2.4.1).
 GetDriverVersion The driver version number.
 GetPort The protocol and attachment port (e.g., COM1).
 GetSensorType The infoSensor code (section 2.4.2).
 GetGeometry The infoGeometry code (section 2.4.2).
 GetCapabilities The extended capability bits (section 2.4.4).
 GetXLoSensor The absolute coordinate limits (section 2.3.2).
 GetXLoRim The bezel coordinate limits (section 2.3.2).
 GetXLoBorder The user’s current edge margins (section 2.3.2).
 GetXLoWideBorder Like edge margins, but with an extra-wide edge zone.
 GetXDPI The resolution, in absolute units per inch.
 IsMultiFingerCapable Is this TouchPad able to sense multiple fingers?
 IsPenCapable Is this TouchPad able to sense pens as well as fingers?
 IsTapEnabled Are taps enabled in control panel?
 IsDragEnabled Are drag gestures enabled in control panel? (etc…)

Similarly, the CTouchPadPacket object has a number of functions that describe the state
of the TouchPad.

 IsValid Does this object contain valid data from a packet?
 GetSeq The packet’s sequence number.
 GetTime The time at which the packet arrived.
 GetX, GetY The current finger position.
 GetZ The current pressure.
 GetW The current finger width.
 GetCurrentFingers The number of fingers on the pad.
 GetDX, GetDY The amount of finger motion.
 GetDXB, GetDYB Finger motion with ballistics (acceleration) applied.
 GetXRaw, … Data from TouchPad with no driver filtering.
 IsLeftSw Is the physical left button switch pressed?
 IsPrimSw Is the “primary” button switch pressed?
 IsProx Is the finger on or near the TouchPad surface?
 IsTouch Is the finger touching the TouchPad surface?
 IsFinger Is the finger “present” according to the driver’s algorithms?
 IsStylus Is this a pen stroke instead of a finger stroke?
 IsTap Is a tap gesture in progress?
 IsDrag Is a drag gesture in progress?
 IsMoving Is the finger moving at a significant speed?

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §6.3 Page 76

See the API documentation for a complete listing with full descriptions of the various
functions.

6.3. Sample program
Here is a sample piece of C++ code that uses the TouchPad API. This is not a complete
program, just the part of a larger program that uses the API to access the TouchPad. The
program first enables a feed on the TouchPad, and then calls the MyProcessPacket()
function with the X, Y, and Z coordinates from each packet.

#include "TouchPad.h"

CTouchPad* pTouchPad;

void MyInitTouchPad()
{
pTouchPad = new CTouchPad; // Create the CTouchPad object.
if (!pTouchPad->IsTouchPad()) {
MessageBox("No Synaptics TouchPad detected. Exiting.\n");
PostQuitMessage(0);
delete pTouchPad;
return;

}
pTouchPad->SetupFeed(hMyWnd, iMyMessage); // Set up messaging.
pTouchPad->StartFeed(); // Start the flow of TouchPad packets.

}

// If using MFC and the MS Development environment, set up a Windows
// message handler:
BEGIN_MESSAGE_MAP(MyClass, CWnd)
ON_MESSAGE(iMyMessage, OnSynTpFeed)

END_MESSAGE_MAP()

// Otherwise, in a non-MFC windows program, your window procedure will
// be called as follows:
// LRESULT CALLBACK MyWndProc(hMyWnd, iMyMessage, wParam, lParam)
// and will then probably call OnSynTpFeed(wParam, lParam) or some such handler.

LRESULT OnSynTpFeed(UINT wParam, LONG lParam)
{
ASSERT(lParam);

// Create a CTouchPadPacket object with data for this packet.
// wParam holds a packet sequence number used for validation and lParam contains
// a pointer to the CTouchPad object that sent the message.
CTouchPadPacket pkt((CTouchPad*) lParam, wParam);

if (pkt.IsValid()) {
// It is important to check the IsFinger bit, because x and y are not valid
// unless a finger is on the pad (and thus IsFinger is TRUE).
MyProcessPacket(pkt.GetX(), pkt.GetY(), pkt.GetZ(), pkt.IsFinger());

}
}

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.1 Page 77

7. Appendices

7.1. Historical TouchPad features
This appendix describes some features of older Synaptics TouchPads which have been
discontinued in modern (version 4.x) pads. The present appendix may be interesting if
you are writing software that is sure to be used only with older TouchPads.

7.1.1. Old-style mode bytes
TouchPads prior to version 3.2 supported a total of four mode bytes. Starting with
version 3.2, the last two mode bytes were discontinued, leaving just two host-settable
mode bytes. Certain later 3.x pads, and all 4.x pads, further reduced the configurability
to a single mode byte. When the infoSimpleCmd bit (section 2.4.2) is 1, the TouchPad
pad supports just one mode byte as described in section 2.5. When infoSimpleCmd is 0,
the TouchPad supports additional mode bytes as described below.

In the PS/2 protocol, query $01 read the first two mode bytes and query $02 read the
second two mode bytes. In modern pads, query $02 reads the extended capability bits.
To set a mode byte, the host would transmit four Set Resolution commands followed by a
Set Sample Rate with an argument of 10, 20, 40, or 60 (decimal) to set mode byte 1, 2, 3,
or 4, respectively. In modern pads, mode byte 2 is the only mode byte; attempts to set the
other mode bytes are ignored.

In the Serial and ADB protocols, the host could read or set all four mode bytes in a single
command. The commands documented in sections 4.4 and 5.4.3 to read and set the
modern mode byte generalize to access the four mode bytes in the obvious way.

The original four TouchPad mode bytes were arranged as follows:
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1 Corner Z-threshold Tap Mode Edge Motion

Byte 2 Absolute Rate — — Baud 3-Button Middle Hop

Byte 3 Right edge margin Left edge margin

Byte 4 Top edge margin Bottom edge margin

Figure 7-12. PS/2 TouchPad mode bytes (obsolete)

The four mode bytes defaulted to $3B, $00, $55, and $55, respectively, at power-up.

The Corner bit enabled the corner-tap feature; a tap or drag gesture initiated in the upper-
right corner of the pad simulated a right-button click instead of a left-button click. In
modern TouchPads, tap and drag gestures always simulate a left click in Relative mode.

The Z-threshold bits allowed the host to adjust the Z threshold used for detecting the
presence of the finger. Values from 1 to 7 varied from “light” to “heavy” touch; 0
selected an especially light touch. In modern TouchPads, the Z threshold is fixed at
approximately 30 units.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.1 Page 78

The Tap Mode bits were 00 to disable all tap gestures, 01 to enable taps but not drags, 10
to enable taps and drags, and 11 for taps and “locking” drags. With locking drags, a drag
gesture would continue to hold the virtual button down until the user executed a second
tap to end the locking drag. Modern TouchPads have a single DisGest bit in a different
location; DisGest = 0 corresponds to Tap Mode = 10, and DisGest = 1 corresponds to Tap
Mode = 00.

The Edge Motion bits were 00 to disable Edge Motion, 01 for Edge Motion at all times,
or 11 for Edge Motion only during drag gestures. In modern TouchPads this selection is
effectively stuck at 11.

The 3-Button bit enabled a mode in which tap gestures were reported as left clicks, and
the left and right physical switches reported as middle and right mouse buttons,
respectively.

The Middle bit caused corner-tap or hop gestures to simulate middle button clicks instead
of right button clicks.

The Hop bit enabled a gesture which caused taps to simulate right button clicks when the
user tapped far to the left or right of the previous finger location. This feature was never
very successful, and it was discontinued in version 3.2 of the TouchPad.

The edge margin bit fields allowed the host to control the positions of the edge margins,
or equivalently, the sizes of the edge zones which triggered the Edge Motion feature. For
each edge, a value 0 produced a narrow margin, and a value of 15 produced a wide
margin. Starting with version 3.2 of the TouchPad, adjustable margins were
discontinued.

7.1.2. Fast PS/2 mode byte access
TouchPads with the infoSimpleCmd bit set to 0 supported a set of non-standard PS/2
command codes that provided easier access to the four mode bytes. These commands
used byte codes $E0 through $E3. To avoid confusion with other PS/2 devices,
commands $E0 through $E3 were recognized only if the special Identify TouchPad
sequence (four Set Resolution 0 commands and a Status command) had been sent to the
device since power-up.

Each special command would “access” one mode byte. If the most recent Set Scaling
command was Set Scaling 1:1 ($E6), the command would read a mode byte. The
response was an ACK ($FA), followed by a data byte. If the most recent Set Scaling
command was Set Scaling 2:1 ($E7), the command was followed by one argument byte;
it would set a mode byte according to the argument.

Commands $E0, $E1, $E2, and $E3 accessed mode bytes 1, 2, 3, and 4, respectively.
Commands $E2 and $E3 were discontinued starting with version 3.2.

While the $E0–$E3 commands were faster and simpler than the command sequences
described in section 3.5.2, they were of limited utility since the standard PC BIOS does
not allow non-standard command codes to be sent to a PS/2 device. Thus, the $E0–$E3
commands were discontinued altogether in later devices (including all 4.x devices).

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 79

7.2. Glossary and Index
This section summarizes the definitions of many of the terms and notations used in the
Synaptics TouchPad Interfacing Guide. The “§” symbol denotes a reference to the
section of the Guide where a word or concept is discussed.

$ In this Guide, the dollar sign signifies hexadecimal (base-16)
notation: $7FF = 0x7FF = 7FFh = 2047 decimal.

— In bit-field diagrams, see reserved.

Absolute Mode A mode in which the TouchPad reports the absolute position of the
finger in each packet. (§2.3)

Absolute Position The position of the finger on the pad surface measured absolutely
with respect to a coordinate system with the point (0,0) in the
lower-left corner. See also relative motion. (§2.3.2, Figure 2-4.)

Absolute Reportable Limits
The most extreme coordinate values that the TouchPad can report
under any circumstances. The physical nature of the sensor
ensures that all actual coordinate values will fall in a much
narrower range. (§2.3.2)

Acceleration Pointing devices typically offer a feature called “acceleration” or
“ballistics” which increases the speed factor at higher speeds in
order to help the user move the cursor a long distance with a small
motion. (§2.6.3)

ACK A response byte with value $FA used to acknowledge each host
command or argument byte in the PS/2 protocol. (§3.2.3)

ACPI The Advanced Configuration and Power Management Interface, a
standard promoted by Intel, Microsoft, and Toshiba.

ADB Apple Desktop Bus™. The interface used by all but the earliest
Apple Macintosh® computers to connect to low-speed peripherals
like mice and keyboards. (§5)

Announcement An unsolicited transmission from a device which tells the host that
the device is present and powered on. In PS/2 pointing devices,
the announcement is $AA, $00 (§3.3). In Serial devices, the
announcement is $4D (“M”) possibly followed by a plug-and-play
ID string (§4.3).

API Application Programming Interface. Typically, this refers to a set
of functions and data types offered by a piece of system software
to allow access by application software. (§6)

Application Software
Software that interacts directly with the user, generally that was

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 80

deliberately run by the user to accomplish some task. Application
software generally interacts with the TouchPad via the TouchPad
API. (§6)

ASIC Application specific integrated circuit. A chip specially designed
for a particular task. TouchPads include the T1002 or T1004
capacitive sensing ASIC designed by Synaptics.

Bezel A physical covering that surrounds the TouchPad sensor. The
bezel keeps the finger from straying outside the active sensor area,
and also keeps the TouchPad electronics safe from dirt and ESD.
Synaptics publishes a recommended bezel shape and position for
each TouchPad model. If the bezel opening is too large, it may
expose area beyond the active sensor which will result in an
undesirable “dead spot.” If the bezel opening is too small, it may
obstruct the edge zones, which will prevent the Edge Motion™
feature from operating correctly.

Bezel Limits Coordinate values that would be reported by a finger held against
the edge or corner of the bezel. Actual reachable limits depend on
the bezel opening and the size of the finger, so the bezel limits
shown in Figure 2-3 are “padded” to ensure that most fingers will
be able to reach the bezel limits. The TouchPad does not clip its
coordinates to the bezel limits, so the coordinates may sometimes
vary outside this range especially when the pad is used with small
fingers. (§2.3.2)

Button See virtual button and physical button.

Calibration A process taking about one-half of a second in which the
TouchPad prepares its capacitive sensors for operation. (§2.6.5)

Capability A feature which is supported if an associated “capability bit” is
reported as 1 by the TouchPad. In this Guide, capability bits have
names beginning with “cap…”. (§2.4.4)

Capacitance The electrical phenomenon which most TouchPads use to sense the
presence of fingers. (§2.6.1)

Click Clicking a button involves pressing (activating) the button for a
short time, then releasing the button, generally not involving cursor
motion while the button is pressed.

CLK Also “clock.” The PS/2 signal wire that carries timing information
from the device to the host, as well as inhibit commands from the
host to the device. (§3.1)

Combo Short for “combination,” in pointing devices this refers to a device
that can use either the PS/2 or the Serial protocol depending on
which type of port it is connected to. (§4.1)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 81

Command One or more bytes sent by the host to the device as a request for
the device to perform some action or answer some query.

Connector A plug for connecting a cable to a machine or to another cable.
Male connectors have pins which fit the corresponding holes in the
female connector. In PS/2, the host has a male connector and the
pointing device is female. In RS-232, the host is female and the
pointing device is male. (§3.1, §4.1, §5.1)

Coordinates A pair of numbers identifying an absolute position on the surface
of the TouchPad. See X coordinate and Y coordinate. (§2.3.2)

CTS The “Clear To Send” pin in the RS-232 protocol. The Synaptics
“Combo” TouchPad actually uses CTS for an entirely different
purpose, as a PS/2 power supply pin. (§4.1)

Cursor A symbol displayed on a computer screen which can be moved
around the screen using a pointing device. The cursor is often
shaped like an arrow. The user can operate a control or select a
piece of text by moving the cursor onto the control or text and
clicking the “mouse” button. (§2.6.3)

DATA The PS/2 signal wire that carries data bits between the device and
the host. (§3.1)

DB-9 The nine-pin connector used for RS-232 ports. Some ports actually
use a DB-25 connector, whose twenty-five pins contain all the
signals on a DB-9 port plus many others which are not relevant to
TouchPads. (§4.1, Figure 4-1)

Deltas A pair of numbers measuring an amount of relative motion. Deltas
are named for the Greek letter ∆ which is used in mathematical
notation to signify an amount of change in a variable. The “∆X”
value measures change in the X coordinate, i.e., horizontal motion.
The “∆Y” value measures vertical motion. (§2.6.3)

Device In the discussion of TouchPad protocols, “device” refers to the
TouchPad or other pointing device, as distinct from the host.

DIN-6 The small, round six-pin connector used for PS/2 mouse ports and
some keyboard ports. Actually, this connector is correctly known
as a “mini-DIN-6.” The larger DIN-5 connector is sometimes used
for keyboard ports, especially on older machines.
(§3.1, Figure 3-1)

Down Orientation The “down” orientation for TouchPads is defined as the orientation
in which the cable exits from behind the bottom edge of the
module, i.e., the edge closest to the user’s body. (Figure 2-10(b))

DPI Dots Per Inch. A measure of resolution; when applied to pointing
devices, a “dot” is generally taken to mean one unit of position or

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 82

one unit of motion. An absolute resolution of 2000 DPI means that
a change in finger position by one inch will cause a change in the
X or Y coordinate by 2000 units. A relative resolution of 200 DPI
means that a change in finger position by one inch will produce a
sequence of packets whose ∆X or ∆Y values add up to 200 units.
(§2.4.3)

Drag The act of pressing a mouse button and holding the button down
while moving the pointing device.

Drag Gesture A gesture involving a tap on the pad followed immediately by the
return of the finger to the pad surface. Viewed another way, the
gesture feels like a double-tap in which the second tap is extended
into a full motion stroke; this leads to the nickname tap-and-a-half
for the drag gesture. This gesture activates the virtual button for as
long as the finger remains on the pad. The virtual button is
released when the finger lifts from the pad at the end of the motion
stroke. (§2.6.4, Figure 2-17)

Driver A piece of system software responsible for operating a hardware
device on behalf of higher-level software. The TouchPad is
generally operated either by a standard mouse driver supplied by
the operating system, or by the Synaptics TouchPad Driver.
(§2.6.6)

DSR The “Data Set Ready” pin in the RS-232 protocol. Serial pointing
devices actually use DSR for an entirely different purpose, as a
plug-and-play identification pin. (§4.1)

DTR The “Data Terminal Ready” pin in the RS-232 protocol. Serial
pointing devices actually use DTR for an entirely different
purpose, as a power supply pin. (§4.1)

Edge Margins The coordinate limits that identify the dividing lines beween the
edge zone and the interior of the pad. (§2.3.2)

Edge Motion™ A feature which assists with long-distance cursor motions,
especially during drag gestures. If the finger moves into the edge
zone of the pad, the pad begins to generate continuous relative
motion in the direction corresponding to the edge. (§2.6.4)

Edge Zone The area comprising the parts of the TouchPad surface very near to
the edge of the bezel. (Equivalently, the “interior” is a rectangular
area covering the central part of the pad, and the edge zone is the
part of the pad surface not in the interior.) Moving the finger into
the edge zone triggers Edge Motion™. (§2.3.2, §2.6.4)

Electrical Noise See noise.

ESD Electrostatic discharge. When the user builds up a charge of static
electricity and then touches a conductive object, a small spark can

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 83

result. This spark can play havoc with sensitive electronic devices
such as TouchPads. To minimize the risk of ESD disruption,
designers should carefully follow Synaptics’ recommendations on
grounding and bezel design.

Feed An active connection to the TouchPad API which delivers
information to the application about finger and button actions on
the TouchPad. (§6.1)

Female Connector See connector.

Filtering A general term for data processing steps that try to reduce the
effects of noise and produce smoother motion. The TouchPad
includes various filtering algorithms built-in; when using the
Absolute mode X and Y coordinates for precise work, software
designers may wish to apply more filtering. (§2.3.2)

Finger In most Synaptics TouchPads, the “finger” must be a grounded,
conductive object roughly the size of a human fingertip. Certain
TouchPad models can also sense pens; except where pens are
explicitly treated differently, the word “finger” in this Guide refers
to whichever object is activating the TouchPad sensor, whether a
pen or a true finger. (§2.6.1, §2.3.4)

Firmware The software that operates the microcontroller built-in to the
TouchPad module. See also version number. (§2.6)

Framing Error The PS/2 and RS-232 protocols both send bytes in several-bit
“frames” consisting of a start bit, data bits, and stop bit. If the
receiver detects the wrong value for the stop bit, it can deduce that
transmission errors have caused the transmitter and receiver to lose
agreement on which bit interval is the beginning of a new frame.
(§3.2.2, §4.2)

Gesture A finger action which the host interprets as a special command
instead of as a simple cursor motion. See tap, drag, and scrolling
gesture.

Host The computer or other system in which the TouchPad is a part. To
a pointing device, the “host” is both an immediately connected
piece of hardware (such as the KBC in the case of the PS/2
protocol), and the larger computer system comprising drivers, the
operating system, and application software. (§2.6.6)

Host Software Any software running on the host that interacts with the TouchPad;
for example, drivers, applications, and the operating system.
(§2.6.6)

Hot-Plugging The act of attaching a device to a computer which is already
powered up and running. Hot-plugging a PS/2 device does not
work without special attention from the driver, since the device

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 84

needs an Enable command to be transmitting packets. Hot-
plugging a Serial device generally works. However, please note
that hot-plugging is not recommended for PS/2, Serial, or ADB
devices—because of the design of the connectors, hot-plugging
can cause signal wires to make contact before power supply wires,
which can result in damage to the TouchPad’s electronics. (§4.3)

Inhibit In the PS/2 protocol, the host can inhibit the device to prevent the
device from sending new data until the host is ready. The host can
also inhibit during a transmission to cancel the transmission in
progress. (§3.2)

KBC Keyboard Controller. The part of the host, usually a subsidiary
microprocessor, which manages the host side of the PS/2 interface.
(§2.6.6, §3.7.1)

Lifting Lifting the finger means taking the finger far enough away from
the surface of the pad so that the pad no longer registers the
finger’s presence (i.e., until the Z value falls below the touch
threshold). (§2.6.1)

Line Control Bit The final bit of a PS/2 transmission from host to device. (§3.2.2)

Male Connector See connector.

Margin See edge margins.

Mickey One unit of mouse motion as reported by the pointing device to the
host. (§2.6.3)

Mode Byte An 8-bit value held by the TouchPad which contains various bits
that control the behavior of the TouchPad. Each protocol provides
a way for the host to read and change the mode byte. (§2.5)

Model ID A 24-bit response to a certain query which describes the size and
shape of the TouchPad. (§2.4.2)

Model Number An alphanumeric code, such as “TM41PUA134”, which describes
a kind of TouchPad module as ordered from Synaptics. (§2.7)

Module The standard TouchPad product from Synaptics is a “module”
consisting of a circuit board with components and connector on the
back and a protective mylar label on the front surface. The system
integrator typically installs the module in a bezel and adds two
button switches to form a complete working TouchPad. (§2.7)

Mouse A pointing device containing motion sensors which can move
freely on a work surface. Because a mouse uses motion sensors, it
can only deliver relative motion data to the host. Most system
software assumes the pointing device is a mouse by default; most
pointing devices simulate a mouse by default.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 85

Mouse Button See virtual button and physical button.

MultiSwitch A type of Synaptics TouchPad which supports four physical
buttons instead of just the usual two. (§2.4.4, §3.6.2)

Noise Electrical noise is interference caused by fluctuations in the
ground, the power supply, or the electric field surrounding the
TouchPad. Synaptics TouchPads use a variety of methods to
minimize the effects of noise, but extreme noise can cause jitter in
the X, Y, and Z values. Reducing the packet rate is one way to
combat noise (§2.2); filtering is another (§2.3.2).

Open-Collector Also “open-drain.” A type of digital signal where the transmitting
circuit is able to drive the wire to 0V or to let the wire “float” to
any voltage, but not to drive the wire a high voltage. A pull-up
resistor is attached to the wire to cause the wire to float to a high
voltage when no other circuits are driving it low. (§3.1)

Packet One transmission from the pointing device to the host describing
the user’s actions. The device sends many packets per second in
order to form the illusion of continuous cursor motion. (§2.1,
§2.3)

Packet Rate The rate at which the TouchPad potentially sends packets to the
host. In PS/2 Remote mode and in ADB, the packet rate is actually
the rate at which new packets become available for polling. Note
that in Relative mode, the packet rate is merely the maximum
possible number of packets transmitted per second, but in Absolute
mode, the packet rate is the guaranteed number of packets per
second whenever transmission is in progress. Not to be confused
with PS/2 sample rate. (§2.2)

Palm Check™ A feature of Synaptics drivers which tries to use palm detection
and other clues to suppress the effects of accidental TouchPad
activation.

Palm Detection A TouchPad which measures the width of finger contact to
distinguish between true finger contact and accidental activation by
the palm of the hand. (§2.3.4, §2.4.4)

Parity A method for detecting transmission errors. The transmitter counts
the number of ‘1’ bits sent, then sends a parity bit which is either
‘1’ or ‘0’ in order to cause the total number of ‘1’s to be odd (thus
the name “odd parity”). The receiver then counts the number of
‘1’ bits and detects an error if the number is not odd. Parity
guarantees detection of any single-bit error, and some but not all
multi-bit errors. (§3.2)

Pen Any object except a finger which is used to point on a TouchPad.
Only TouchPad models with the capPen capability are able to

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 86

sense pens. The pen may be an actual (non-inking) writing stylus,
or it may be a fingernail or any other rigid, non-conductive object
that is convenient for pointing. (§2.3.4)

Physical Button A button or switch on a pointing device which sends a command
signal to the host. On an IBM-compatible PC, the pointing device
typically has two buttons labeled “left” and “right.” On an Apple
Macintosh, the pointing device typically has just one button. The
phrase “physical button” refers to an actual button, not a virtual
button activated by tap gestures. (§2.3.1)

Plug and Play A standard which allows PC-compatible computers to identify the
hardware connected to them. PS/2 pointing devices do not need
any special attention to comply with Plug-and-Play; Serial pointing
devices need a special connection on the DSR pin, plus a special
Plug-and-Play ID string. (§4.1, §4.3)

Pointing Device A mouse, track ball, touch pad, or other device which is used to
move the cursor on the computer screen.

Portrait A portrait-oriented pad is one which is rotated 90° from the
standard orientation, so that the vertical axis is longer than the
horizontal. The standard orientation, where the horizontal axis is
longer, is sometimes called “landscape.” (Figure 2-11(b))

Pressure As measured by a TouchPad, “pressure” is actually the total
amount of capacitance over the contact area of the finger. Pressing
harder causes the flesh of the finger to flatten out against the pad,
thus increasing the contact area. Hence, in casual use “pressure”
and “contact area” can be treated as the same. (§2.3.3, §2.6.1)

Protocol A defined method for communicating between a device and the
host. See PS/2, RS-232, and ADB.

PS/2 The protocol used by most internal pointing devices in notebook
computers, and by many external pointing devices. First used for
pointing devices in the IBM PS/2 computer, although the IBM
PC AT used essentially the same low-level protocol for the
keyboard. (§3)

PS/2 Sample Rate A parameter of the PS/2 mouse protocol; not fully implemented on
Synaptics TouchPads. See packet rate. (§3.4)

PS/2 Resolution A parameter of the PS/2 mouse protocol; not fully implemented on
Synaptics TouchPads. See resolution. (§3.4)

Query A command from the host which is a request for information about
the properties or current state of the TouchPad. (§2.4)

Relative Mode A mode in which the TouchPad reports the relative motion of the
finger in each packet. (§2.1)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 87

Relative Motion The change in position of the finger relative to the finger’s
previous position. A conventional mouse can report only relative
motion, not absolute position, because the mouse has no way to
sense an absolute point of reference (such as the lower-left corner
of the desk or mouse pad). (§2.6.3)

Request To Send In the PS/2 protocol, a condition on the bus that tells the device to
read a command from the host as soon as possible. See also RTS.
(§3.2)

Reserved A bit or bit-field is “reserved” if the present TouchPad models do
not use it in any (published) way. The host should not interpret a
reserved bit in any way; if the host writes to a reserved bit, it
should write the default value shown in this Guide (or zero if not
shown), or alternatively it can read the reserved bit and then write
back the same value.

Reset An action or command to restore a device to its initial, default
state. The TouchPad resets itself when power is first applied.
Also, each protocol provides a form of “software reset”: In PS/2,
the Reset ($FF) command (§3.3); in Serial, the RTS wire (§4.3); in
ADB, the Global Reset signal or SendReset command (§5.3).

Resolution The number of positioning units corresponding to a given physical
distance on the pad. See also DPI. Not to be confused with
PS/2 resolution. (§2.4.3)

Response One or more bytes sent by the device to the host in response to a
host command.

RS-232 The protocol used by serial “COM” ports for communicating with
modems, printers, and other devices. Serial pointing devices use
the RS-232 port and protocol in an unconventional way to send
pointing information to the host. (§4)

RTS The “Request To Send” pin in the RS-232 protocol. Serial
pointing devices actually use RTS for an entirely different purpose,
as a power supply and software reset pin. (§4.3)

RTS Handshake The process of bringing DTR positive, then RTS first negative and
then positive, to identify a pointing device on a serial port. (§4.3)

RxD The “Receive Data” pin in the RS-232 protocol. The RxD pin on
the TouchPad connects to TxD on the host’s serial connector.
Note that, in this document, RxD is named from the TouchPad’s
point of view: It carries data received from the host. (§4.1)

Scrolling Gesture A gesture which causes the current window to scroll. The
Synaptics TouchPad does not decode scrolling gestures itself, but
the Synaptics driver software does offer a variety of scrolling
gestures.

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 88

Sensor The top surface of the TouchPad module, which is able to sense
the presence and position of a finger.

Serial Device A “Serial” pointing device interfaces to the host using the RS-232
protocol. Named because the RS-232 protocol sends bits serially,
one at a time, over a wire. (Note that, even though the PS/2
protocol is also a bit-serial protocol, PS/2 pointing devices are
never called “Serial” pointing devices.) Not to be confused with
serial numbers. (§4)

Serial Number A unique number assigned to each individual TouchPad. A
TouchPad with an assigned serial number is said to be serialized.
Not to be confused with Serial devices. (§2.4.5)

Sleep A mode in which the device operates at reduced power in
exchange for reduced functionality (namely, the ability to sense
buttons but not fingers). (§2.5)

Stop Bit One or more bits of a known value at the end of each transmitted
byte. The PS/2 and RS-232 protocols use the stop bit to detect
framing errors; in RS-232, the receiver can also use guaranteed
transition between a stop bit and a subsequent byte’s start bit to
resynchronize itself to the transmitter. (§3.2.2, §4.2)

Stroke A finger stroke is one complete finger action involving placing the
finger on the pad, possibly moving the finger around for some
amount of time, then lifting the finger away from the pad. (§2.6.3)

Stylus See pen.

Switch See physical button.

Tap Gesture A gesture involving touching the pad briefly and then immediately
lifting the finger, with little or no finger motion while the finger is
on the pad. The TouchPad decodes the tap gesture to simulate a
brief click of the virtual button. See also drag gesture. (§2.6.4)

Tap-and-a-half See drag gesture.

TBD “To be determined.” Contact Synaptics for further information.

Touch Pad A pointing device which translates motions of a finger on a sensor
surface into cursor motions.

Touching The Synaptics TouchPad considers the finger to be “touching” if it
is close enough to register a Z value of at least 25–30. For typical
fingers, this represents light finger contact. (§2.6.1)

Touch Threshold A value to which the Z value is compared to decide whether or not
there is a finger on the pad. (§2.6.3, §7.1.1)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.2 Page 89

TTL An older technology for digital circuits which operated with a 5V
power supply. While TTL has largely been supplanted by CMOS,
its 5V power supply standard has survived. Nowadays, digital
signals operating at 5V are often called “TTL-level signals.”
(§4.1.1)

TxD The “Transmit Data” pin in the RS-232 protocol. The TxD pin on
the TouchPad connects to RxD on the host’s serial connector.
Note that, in this document, TxD is named from the TouchPad’s
point of view: It carries data transmitted to the host. (§4.1)

UART (Also USART or SCI.) Universal Asynchronous Receiver /
Transmitter. A chip or circuit which implements the RS-232 byte-
level protocol. On a modern PC, this is typically a 16550 device or
equivalent. (§4.2)

Undefined Same as reserved.

Up Orientation The standard “up” orientation for TouchPads is defined as the
orientation in which the cable exits from behind the top edge of the
module, i.e., the edge farthest from the user’s body.
(Figure 2-10(a))

USB Universal Serial Bus. A protocol for connecting low- and
medium-speed devices to personal computers. (§2.6.6)

Version Number A two-part number identifying the revision level of the TouchPad,
especially of its physical design and its firmware. In the version
number “4.5”, “4” is the major version and “5” is the minor
version. (§2.4.1)

Virtual Button A simulated mouse button which is activated by tap and drag
gestures instead of by a physical switch. The system typically
treats the physical and virtual buttons the same so that tap gestures
can serve as a convenient alternative to button clicks. (§2.6.4)

Virtual Scrolling™ See scrolling gesture.

Windows® Any of the Microsoft Windows® family of operating systems, such
as Windows® 95 or Windows NT®.

W Mode A variant of absolute mode in which the TouchPad reports the
W value in each packet as well as X, Y, and Z.

W Value A four-bit code which identifies the character of finger presence,
e.g., the width of the finger, the number of fingers, and whether the
contact is by a pen or a true finger. (§2.3.4)

X Coordinate The coordinate identifying the horizontal position of the finger;
low values are near the left edge of the pad, and high values are
near the right edge. (§2.3.2)

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.3 Page 90

∆∆∆∆X Value The delta identifying the amount of horizontal finger motion.

Y Coordinate The coordinate identifying the vertical position of the finger; low
values are near the bottom edge of the pad (closest to the user), and
high values are near the top edge. (§2.3.2)

∆∆∆∆Y Value The delta identifying the amount of vertical finger motion.

Z Value A numeric value reported by the TouchPad which measures the
pressure of the finger contact. (§2.3.3)

7.3. References: Synaptics literature
Synaptics TouchPad Single-Chip Standard Module TM41P-134: Product Specification,
Synaptics TouchPad Single-Chip Ultra-Thin Module TM41P-220: Product Specification,
Synaptics TouchPad Single-Chip Mini-Module TM41P-134: Product Specification,
Synaptics TouchPad Single-Chip SubMini-Module TM41P-140: Product Specification,
 Synaptics, Inc., 1997.
 The mechanical and electrical specifications for various TouchPad modules.

Synaptics TouchPad Driver API, Synaptics, Inc., 1995.
Information on the programming interfaces provided by the TouchPad driver software.

Synaptics Web page: http://www.synaptics.com
A variety of on-line literature, specifications, software, and corporate information.

On-line help for Synaptics Windows® 95 & NT drivers.
The driver help file has user-friendly descriptions of many TouchPad features.

(Contact Synaptics for TouchPad Application Notes, etc.)

7.4. References: Other literature
The Undocumented PC, Frank van Gilluwe, Addison-Wesley, 1994.

Discusses the BIOS mouse functions (chapter 13) and keyboard controller (chapter 8).

Plug and Play External COM Device Specification, Microsoft Inc., 1995.
Documents the Plug-and-Play specification, esp. for Serial pointing devices.

Guide to the Macintosh™ Family Hardware, 2nd ed., Apple Inc., Addison-Wesley, 1990.
Chapter 8 is an excellent description of the ADB protocol.

ADB—The Untold Story: Space Aliens Ate My Mouse, Apple technical report, 1994.
Further notes and examples on ADB; coverage of new CDM standard.

Inside Macintosh: Devices, Apple Inc., Addison-Wesley, 1994.
Chapter 5 describes the Macintosh system functions for operating the ADB port.

http://www.synaptics.com/

Synaptics TouchPad Interfacing Guide Second Edition

Copyright 2001 Synaptics, Inc. 510-000080 - A §7.4 Page 91

	Overview
	Table of Contents

	TouchPad Features
	Mouse-compatible Relative mode
	Packet rate
	Absolute mode
	Absolute mode state bits
	Absolute X and Y coordinates
	Absolute mode Z values
	Absolute mode W values

	Information queries
	TouchPad identification
	Model ID bits
	Coordinate resolution
	Extended capability bits
	Serial numbers
	Reading the mode byte

	Mode byte
	Principles of operation
	Sensing finger presence
	Filtering position data
	Sensing motion
	Sensing tapping gestures
	TouchPad calibration
	Host interface to TouchPad

	Synaptics TouchPad model numbers

	PS/2 Protocol
	Electrical interface
	Connector pinouts

	Byte transmission
	Output to host
	Input from host
	Acknowledgement of commands

	Power-on reset
	Command set
	TouchPad special command sequences
	Information queries
	Mode setting sequence

	Data reporting
	Default packet format
	Absolute packet format

	PS/2 implementations
	The keyboard controller
	Sample PS/2 implementation

	Serial Protocol
	Electrical interface
	TTL-level Serial TouchPad

	Byte transmission
	Power-on reset
	Command set
	Serial command timing
	Identify TouchPad command
	Read TouchPad Modes command
	Set TouchPad Modes command
	Read Model ID command
	Read Serial Number command
	Read Resolutions command

	Data reporting
	Default packet format
	Absolute packet format

	ADB Protocol
	Electrical interface
	Byte transmission
	Power-on reset
	Command set
	ADB Register 0
	ADB Register 1
	ADB Register 2
	ADB Register 3

	Data reporting
	Default packet format
	CDM Relative mode packet format
	Absolute packet format

	Driver API
	API basics
	Information available from the API
	Sample program

	Appendices
	Historical TouchPad features
	Old-style mode bytes
	Fast PS/2 mode byte access

	Glossary and Index
	References: Synaptics literature
	References: Other literature

