
#include <Wire.h>

#include <math.h>

#define ADDRESS 0x39

#define REG_CTL 0x80

#define REG_TIMING 0x81

#define REG_INT 0x82

#define REG_INT_SOURCE 0x83

#define REG_ID 0x84

#define REG_GAIN 0x87

#define REG_LOW_THRESH_LOW_BYTE 0x88

#define REG_LOW_THRESH_HIGH_BYTE 0x89

#define REG_HIGH_THRESH_LOW_BYTE 0x8A

#define REG_HIGH_THRESH_HIGH_BYTE 0x8B

#define REG_BLOCK_READ 0xCF

#define REG_GREEN_LOW 0xD0

#define REG_GREEN_HIGH 0xD1

#define REG_RED_LOW 0xD2

#define REG_RED_HIGH 0xD3

#define REG_BLUE_LOW 0xD4

#define REG_BLUE_HIGH 0xD5

#define REG_CLEAR_LOW 0xD6

#define REG_CLEAR_HIGH 0xD7

#define CTL_DAT_INIITIATE 0x03

#define CLR_INT 0xE0

//Timing Register

#define SYNC_EDGE 0x40

#define INTEG_MODE_FREE 0x00

#define INTEG_MODE_MANUAL 0x10

#define INTEG_MODE_SYN_SINGLE 0x20

#define INTEG_MODE_SYN_MULTI 0x30

#define INTEG_PARAM_PULSE_COUNT1 0x00

#define INTEG_PARAM_PULSE_COUNT2 0x01

#define INTEG_PARAM_PULSE_COUNT4 0x02

#define INTEG_PARAM_PULSE_COUNT8 0x03

//Interrupt Control Register

#define INTR_STOP 40

#define INTR_DISABLE 0x00

#define INTR_LEVEL 0x10

#define INTR_PERSIST_EVERY 0x00

#define INTR_PERSIST_SINGLE 0x01

//Interrupt Souce Register

#define INT_SOURCE_GREEN 0x00

#define INT_SOURCE_RED 0x01

#define INT_SOURCE_BLUE 0x10

#define INT_SOURCE_CLEAR 0x03

//Gain Register

#define GAIN_1 0x00

#define GAIN_4 0x10

#define GAIN_16 0x20

#define GANI_64 0x30

#define PRESCALER_1 0x00

#define PRESCALER_2 0x01

#define PRESCALER_4 0x02

#define PRESCALER_8 0x03

#define PRESCALER_16 0x04

#define PRESCALER_32 0x05

#define PRESCALER_64 0x06

int readingdata[20];

int i,green,red,blue,clr,ctl;

double X,Y,Z,x,y,z,b1,b2;

void setup()

{

 Serial.begin(9600);

 Wire.begin(); // join i2c bus (address optional for master)

 //Bolt Rx-Tx

 pinMode(13, OUTPUT);

}

void set_timing_reg(int x)

{

 Wire.beginTransmission(ADDRESS);

 Wire.write(REG_TIMING);

 Wire.write(x);

 Wire.endTransmission();

 delay(100);

}

void set_interrupt_source_reg(int x)

{

 Wire.beginTransmission(ADDRESS);

 Wire.write(REG_INT_SOURCE);

 Wire.write(x);

 Wire.endTransmission();

 delay(100);

}

void set_interrupt_control_reg(int x)

{

 Wire.beginTransmission(ADDRESS);

 Wire.write(REG_INT);

 Wire.write(x);

 Wire.endTransmission();

 delay(100); }

void set_gain(int x) {

 Wire.beginTransmission(ADDRESS);

 Wire.write(REG_GAIN);

 Wire.write(x);

 Wire.endTransmission(); }

void set_ADC_EN() {

 Wire.beginTransmission(ADDRESS);

 Wire.write(REG_CTL);

 Wire.write(CTL_DAT_INIITIATE);

 Wire.endTransmission();

 delay(100); }

void clr_interrupt() {

 Wire.beginTransmission(ADDRESS);

 Wire.write(CLR_INT);

 Wire.endTransmission(); }

void read_RGB()

{

 Wire.beginTransmission(ADDRESS);

 Wire.write(REG_BLOCK_READ);

 Wire.endTransmission();

 Wire.beginTransmission(ADDRESS);

 Wire.requestFrom(ADDRESS,8);

 delay(500);

 if(8<= Wire.available()) // if two bytes were received

 {

 for(i=0;i<8;i++)

 {

 readingdata[i]=Wire.read();

 //Serial.println(readingdata[i],BIN);

 }

 }

 green=readingdata[1]*256+readingdata[0];

 red=readingdata[3]*256+readingdata[2];

 blue=readingdata[5]*256+readingdata[4];

 if (green>red && green>blue)

 {

 if (red>blue)

 {

 green = 1.1*green - 0.1*green; red = .85*red; blue = .65*blue;

 }

 else

 {

 green = 1.1*green - 0.1*green; red = .65*red; blue = .85*blue;

 }

 }

 else if (red>green && red>blue)

 {

 if (green>blue)

 {

 red = 1.1*red; green = .85*green - 0.1*green; blue = .65*blue;

 }

 else

 {

 red = 1.2*red; green = .65*green - 0.1*green; blue = .85*blue;

 }

 }

 else

 {

 if (red>green)

 {

 blue = 1.2*blue; red = .85*red; green = .65*green - 0.1*green;

 }

 else

 {

 blue = 1.2*blue; red = .65*red; green = .85*green - 0.1*green;

 }

 }

 clr=readingdata[7]*256+readingdata[6];

 Serial.println("The RGB value and Clear channel value are");

 //}

Serial.println(red,DEC);

 Serial.println(green,DEC);

 Serial.println(blue,DEC);

 Serial.println(clr,DEC);

}

void calculate_xy()

{

 X=(2.768830875)*red+(1.751709329)*green+(1.130135051)*blue;

 Y=(1)*red+(4.590608578)*green+(0.060066678)*blue;

 Z=(0)*red+(0.056506753)*green+(5.594168503)*blue;

 x=X/(X+Y+Z);

 y=Y/(X+Y+Z);

 if((X>0)&&(Y>0)&&(Z>0))

 {

 Serial.println("The x,y value is");

 Serial.println(x,2);

 Serial.println(y,2);

 }

else {

Serial.println("Error,the value overflow");

}

}

void loop()

{

 set_timing_reg(INTEG_MODE_FREE);//Set trigger mode.Including free mode,manually mode,single

synchronizition jjmode or so.

 set_interrupt_source_reg(INT_SOURCE_GREEN); //Set interrupt source

 set_interrupt_control_reg(INTR_LEVEL|INTR_PERSIST_EVERY);//Set interrupt mode

 set_gain(GAIN_1|PRESCALER_4);//Set gain value and prescaler value

 set_ADC_EN();//Start ADC

 while(1)

{

 read_RGB();

 calculate_xy();

 delay(100);

 clr_interrupt();

 if(x < 0.46&&x > 0.42&&y < 0.41&&y > 0.37){

 b1 = 1;

 digitalWrite(13,HIGH);

 }

 else {

 b1 = 0;

 digitalWrite(13,LOW);

 }

 }

}

