
Routes.py

Lines through 1 to 5 import all necessary files and libraries and make sure you

install all modules using apt-get command if you are on a linux machine and pip

command if you are on a windows machine. In line 7 we pass our app to a

Bootstrap() function to make some bootstrap templates available to serve as a

blueprint that includes all bootstrap resources with predefined blocks where

users can place their content.

Following that we create three routes for our app: index page, dashboard, and

logout. Nowadays, web applications have user-friendly URLs for users’

convenience. We use the route() decorator to bind a function to a corresponding

URL. As the user types in the IP address for the web interface, he gets to the index

page where he is prompted to log in to the system to start it. That is done by our

first route(‘/’, methods=[‘GET’, ‘POST’]), which accepts HTTP methods GET and

POST. We bind a function called index() to this decorator. We instantiate a

LoginForm() object called form to be able to get the user’s credentials when he

logs in. validate_on_submit() function returns True if the form has been

submitted either through GET or POST. In the if statement following that we

check the values for username and password that were predefined for the sake of

simplicity in this template. Finally, if the user enters the right credentials, he is

taken to a dashboard.

Our second decorator route(‘/dashboard’, methods=[‘GET’, ‘POST’]) is the route

for the dashboard. We bind a function called dashboard() to this decorator. This

part of our code actually deals with the hardware. We take advantage of the fact

that a Raspberry Pi allows interfacing sensors and actuators through the general

purpose I/O pins. Because we imported RPi.GPIO as GPIO in line 5, we can now

use this object to interact with the hardware. In our function dashboard(), the

first thing we do is to set up the mode for GPIO pins. We use BCM which is a

Broadcom chip-specific numbering scheme. After that, we define two channels

(pins) for both of our sensors assuming that they would be deployed in two

different rooms. We set our signals to be 0 at the beginning. We set our channels

to act as input pins in lines 28 and 29. We then instantiate an object from Settings

class to get the settings of the device through the form. In the dashboard,

whenever the user turns the power on, our sensors start waiting for the input.

Then sensors start listening in the infinite while loop and as soon as one of the

sensors detect sound or water, they break out of the infinite while loop and send

the signal to the dashboard specifying the exact location of where a burglar

triggered the sensor.

The last function logout() is bound to the route(‘/logout’) that redirects the user

to the index page.

Reference:

http://flask.pocoo.org/docs/0.12/quickstart/

https://explore-flask.readthedocs.io/en/latest/forms.html

http://flask.pocoo.org/docs/0.12/quickstart/
https://explore-flask.readthedocs.io/en/latest/forms.html

https://pythonhosted.org/Flask-Bootstrap/basic-usage.html

https://pythonhosted.org/Flask-Bootstrap/basic-usage.html

