
Sketch for Home Alert
The sketch is not large in terms of the line count, but it almost exhausts the Uno’s available flash
memory thanks to all the included libraries. There is lots of room for memory optimisation, but
since I am at the prototyping stage, that’s a project for another day. This code is available on
Github.

Here is the sketch, with embedded comments:

#include <SPI.h>

#include <DMD.h>

#include <TimerOne.h>

#include "Arial_black_16.h"

#include <stdlib.h>

#include <Ethernet.h>

#include <Wire.h>

#include "RTClib.h"

RTC_DS1307 rtc;

#include "DHT.h" !

//Fire up the DMD library as dmd

#define DISPLAYS_ACROSS 1

#define DISPLAYS_DOWN 1

DMD dmd(DISPLAYS_ACROSS, DISPLAYS_DOWN); !
#define DHTTYPE DHT22  
#define DHTPIN 2

DHT dht(DHTPIN, DHTTYPE);

#define HW_ID "1"

#define WEBSITE "alert.arduinosbs.com"

#define WEBPAGE "/get_message/"

#define IDLE_TIMEOUT_MS 3000 !
byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };

IPAddress ip;

EthernetClient client; !
char text_buffer[10]; !
boolean reading = false; //TRUE while the GET request is being received

String get_request = ""; //Holds the GET request !
void ScanDMD()

{

 dmd.scanDisplayBySPI();

} !!!
void setup(void)

Inclusions required for the DMD

Inclusions required for the Ethernet Shield

Inclusions required for the real-time clock, and
declare the clock object (rtc).

Inclusions required for the DHT sensor, and definition
of its data pin.

Define the dimensions of the DMD and
start it up. We only use a single DMD here.

Define the type of DHT used (DHT22), its data pin,
and initialise the sensor object (dht).

HW_ID is the ID of the device. It’s ok to
have multiple devices with the same ID,
however remember that they will all be
displaying the same message.

The host address and path to the web
service that serves the message to be
displayed on the DMD. If the service
takes over 3 seconds to respond, give
up.

Set the MAC address for the Ethernet Shield. Declare the ip
address and Ethernet client objects.

A buffer used by the dtostr function, used to
process the text that appears in the DMD.

These are used by the GET response parser. I explain
how this works in detail in Arduino SbS Lecture 38.

This function is called by the timer interrupt every 5ms.
The call to scanDisplayBySPI refreshes the DMD. The
interrupt is set in the setup function.

Start the serial port so we can see messages from the
sketch.

https://github.com/futureshocked/home-alert

{

 Serial.begin(9600);

 Timer1.initialize(5000);

 Timer1.attachInterrupt(ScanDMD);

 dmd.clearScreen(true);

 dht.begin();

 Wire.begin();

 rtc.begin(); !
 if (! rtc.isrunning()) {

 rtc.adjust(DateTime(__DATE__, __TIME__));

 }

 if (Ethernet.begin(mac) == 0) {

 }

 Serial.print("My IP address: ");

 ip = Ethernet.localIP();

 for (byte thisByte = 0; thisByte < 4; thisByte++) {

 // print the value of each byte of the IP address:

 Serial.print(ip[thisByte], DEC);

 Serial.print(".");

 }

 Serial.println();

}

void loop(void)

{

 setup_DMD();

 make_get_request();

 process_response();

 display_environmental_info();

 show_time();

}

void setup_DMD(){

 dmd.clearScreen(true);

 dmd.selectFont(Arial_Black_16);

} !
 
 
 
 
 !

Initialise the Timer1 object to trigger an interrupt ever
5msec. Then, attached this interrupt to the ScanDMD
function. This function will be called every 5msec and
will refresh the LEDs on the DMD.Start the DHT

device.
Clear the DMD.

Start the I2C interface, and start the real-time clock
device.

Check that the real-time clock is running. If it isn’t, it
means that it’s time and date are not set, so set it
based on the system time and date. The real-time
clock device is discussed in detail in Arduino SbS
Lecture 48 and 49.

Start the Ethernet Shield. An IP address will be leased
from the local DHCP server, and it will be shown in the
serial monitor. The Ethernet shield is discussed in
detail in Arduino SbS Lecture 33 and 34.

Each loop starts by calling these 5 functions in
sequence.

1. Setup the DMD

2. Make a HTTP request for a new message from the

web service

3. Process the HTTP response from the web service

and display it to the DMD

4. Display temperature and humidity info

5. Show the time for minute, then the date as

scrolling text.

The setup_DMD function. Clears the screen, then sets
the text font to Arial_Black_16.

void display_marquee(String &message)

{

 char buffer[message.length()+1];

 message.toCharArray(buffer, message.length()+1);

 dmd.clearScreen(true);

 dmd.drawMarquee(buffer,message.length(), 
 (32*DISPLAYS_ACROSS)-1,0);

 long start=millis();

 long timer=start;

 boolean ret=false;

 while(!ret){

 if ((timer+30) < millis()) {

 ret=dmd.stepMarquee(-1,0);

 timer=millis();

 }

 }

}

void show_time(){

 DateTime now = rtc.now();

 String hour;

 String minute;

 byte byteHour = now.hour();

 byte byteMinute = now.minute(); !
 if (byteHour < 10)

 {

 hour = "0";

 hour += String(byteHour,DEC);

 } else

 {

 hour = String(byteHour,DEC);

 }

 if (byteMinute < 10)

 {

 minute = "0";

 minute += String(byteMinute,DEC);

 } else

 {

 minute = String(byteMinute,DEC);

 }

 dmd.drawChar(0, 3, hour[0], GRAPHICS_NORMAL);

 dmd.drawChar(7, 3, hour[1], GRAPHICS_NORMAL);

 dmd.drawChar(17, 3, minute[0], GRAPHICS_NORMAL);

 dmd.drawChar(25, 3, minute[1], GRAPHICS_NORMAL);

  

The drawMarquee function starts
drawing the scrolling text onto the
DMD. The text is read from an
array of char. The drawMarquee
function is also initialised with the
length of the text message, and
with the position from where the
message is to appear. In this
example, scrolling will start from
the right side of the DMD, i.e. the
the LED at the 31st column and
0th row. Change this to 0,0 to see
what happens.

This structure will update the DMD
30msec after the last update. If
you change the 30 to a higher
number, the scrolling will slow
down and vice-versa. The call to
function stepMarquee is what
does the actual update. The
parameters control the direction of
the scroll. With (-1,0), the text will
move one LED to the left and 0
vertically. If you want to move the
text towards the right, use (1,0). It
is worth experimenting with these
parameters in conjunction with
those in drawMaquee to create
different scrolling effects.

Get the time/date
from the real-time
clock. Store the
hour and minute in
byte variables to
process later.

Format the hour and minutes with leading zeros if
they are less than 10.

Draw the text for hour and minutes.
The drawChar function receives an
LED position for the character we
wish to print (column, row), then a
single char value, and then the
graphics mode. These modes are
supported:

• GRAPHICS_NORMAL

• GRAPHICS_INVERSE

• GRAPHICS_TOGGLE

• GRAPHICS_OR

• GRAPHICS_NOR

for (int i=0;i<31;i++)

 {

 dmd.drawChar(15, 3, '.', GRAPHICS_OR);

 delay(1000);

 dmd.drawChar(15, 3, '.', GRAPHICS_NOR);

 delay(1000);

 }

} !
void display_environmental_info(){

 byte b;

 DateTime now = rtc.now();

 String month;

 String day;

 String year;

 byte byteMonth = now.month();

 byte byteDay = now.day();

 year = String(now.year(),DEC); !
 if (byteMonth < 10)

 {

 month = "0";

 month += String(byteMonth,DEC);

 } else

 {

 month = String(byteMonth,DEC);

 }

 if (byteDay < 10)

 {

 day = "0";

 day += String(byteDay,DEC);

 } else

 {

 day = String(byteDay,DEC);

 } !
 String marqueeText;

 marqueeText = day;

 marqueeText += '/';

 marqueeText += month;

 marqueeText += '/';

 marqueeText += year;

 marqueeText += ' ';

 marqueeText += dtostrf(dht.readTemperature(), 2, 2, text_buffer);

 marqueeText += '*';

 marqueeText += 'C';

 marqueeText += ' '; !
 marqueeText += ' ';

 marqueeText += 'H';

This loop blinks a dot on and off,
one second each, for 60 seconds in
total, to show passage of time. You
could also use writePixel to blink a
single LED instead, with the same
parameters.

This function will display the time,
date, temperature and humidity on
the DMD

Get the current time and date from
the real-time clock.

Split the date to its components
(day, month, year).

If current month or day is smaller
than 10, add a leading zero
character to make the printout
balanced.

This string will contain the message
that will appear on the DMD.

The dtostrf function formats the temperature
value that is returned by the DHT into a nicely
formatted string that looks like this: 23.10.

Notice that I am only “adding” a single char at a time
into the String object.

 marqueeText += ':';

 marqueeText += dtostrf(dht.readHumidity(), 2, 0, text_buffer);

 marqueeText += '%';

 display_marquee(marqueeText);

} !
void process_response(){

 unsigned long lastRead = millis();

 while (client.connected() && (millis() - lastRead < IDLE_TIMEOUT_MS)) {

 boolean currentLineIsBlank = false;

 get_request = "";

 while (client.available()) {

 char c = client.read();

 if(reading && c == '\n')

 { reading = false;

 parseGetRequest(get_request);

 break;

 } !
 if(reading){

 get_request += c;

 }

 if (reading && c=='\n')

 {

 break;

 }

 if (c == '\n' && currentLineIsBlank) {

 reading = true;

 }

 if (c == '\n') {

 currentLineIsBlank = true;

 }

 else if (c != '\r') {

 currentLineIsBlank = false;

 }

 }

 }

 client.stop();

}

 !!

Call the display_marquee function which will
display the string passed to it in the DMD.

Once the body of the HTTP response
has been capture, it is passed onto
the parseGetRequest function where
it will be parsed.

This function processes the HTTP
response received from the web
service. A detailed discussion that
explains how it works is available in
Lecture 38 of Arduino SbS.

void parseGetRequest(String &str) {

 Serial.print(F("Parsing this string:"));

 Serial.println(str);

 int buzzer_state = str[0] - '0';

 if (buzzer_state == 1)

 tone(3, 1000, 1000);

 String new_str = str.substring(1);

 display_marquee(new_str);

}

void make_get_request(){

 if (client.connect(WEBSITE, 80)) {

 Serial.println(F("connected"));

 client.print(F("GET "));

 client.print(WEBPAGE);

 client.print(HW_ID);

 client.print(F(" HTTP/1.1\r\n"));

 client.print("Host: ");

 client.print(WEBSITE);

 client.print(F("\r\n"));

 client.println();

 } else {

 Serial.println(F("connection failed"));

 }

 } !
The main responsibility of this sketch is to make the Arduino a consumer of a web service. The
web service is a simple web site with two end-points, one for a person to access via a web
browser and submit a text string that they wish to display on the DMD, and another one where the
Arduino will access in order to retrieve that text string.

Parses the body of the HTTP response that
was received from the web service.
Shows a message to the monitor. The F()
function results in storing the string in flash
memory instead of RAM.

The first character of the HTTP response from
the web service will be either “1” or “0”. If it is
a “1”, the buzzer will be activated. This
character is obtained from str[0] (index 0 of
the str object). We subtract the ASCII value of
character “0” in order to get the actual
numerical value of 1 or 0 rather than the ASCII
value.

If buzzer_state is 1, then activate the buzzer,
which is connected to digital pin 3, at 1KHz,
for 1 second.

str.substring(1) will get all characters after the
first (index 1) until the end of the string. This
substring will be passed to the
display_marquee function which will display it
to the DMD.

This function will create an HTTP GET request
to the web service. It is described in detail in
Lecture 38 of Arduino SbS.

