
Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

1

1

www.picaxe.com

Contents
Introduction. ... 4
PICAXE Software ... 4
Labels .. 5
Comments ... 5
Constants .. 6
Symbols .. 6
Directives ... 7
Variables - General ... 10
Variables - Storage ... 11
Variables - Scratchpad .. 12
Variables - System .. 13
Variables - Special function ... 14
Variables - Mathematics .. 22
Variables - Unary Mathematics ... 25
Input / Output Pin Naming Conventions ... 27
adcconfig .. 28
adcsetup ... 29
backward .. 34
bcdtoascii ... 35
bintoascii ... 36
booti2c .. 37
branch .. 39
button .. 40
calibadc (calibadc10) ... 42
calibfreq ... 43
clearbit ... 44
compsetup .. 45
count ... 50
daclevel .. 51
dacsetup ... 52
debug ... 54
dec ... 55
disablebod .. 56
disabletime ... 57
disconnect .. 58
do...loop .. 59
doze ... 60
eeprom (data) ... 61
enablebod ... 62
enabletime .. 63
end ... 64
exit ... 65
for...next .. 66
forward ... 67
fvrsetup .. 68
get ... 69
gosub (call) .. 70
goto ... 71
hi2cin .. 72
hi2cout .. 74
hi2csetup ... 76
hi2csetup - slave mode (X2 parts only) ... 76
hi2csetup - master mode ... 78
halt ... 80
hibernate .. 81
high ... 83
high portc ... 84
hintsetup .. 85
hpwm ... 86

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

2

2

www.picaxe.com

hpwmduty ... 90
hserin ... 91
hserout ... 93
hsersetup .. 94
hspiin (hshin) ... 96
hspiout (hshout) .. 97
hspisetup .. 98
i2cslave .. 102
if...then \ elseif...then \ else \ endif .. 104
if...then {goto} ... 106
if...and/or..then {goto} .. 106
if porta...then {goto} ... 107
if portc...then {goto} ... 107
if...then exit ... 108
if...and/or...then exit ... 108
if...then gosub .. 109
if...and/or...then gosub .. 109
inc ... 111
infrain .. 112
infrain2 .. 114
infraout .. 115
input .. 120
inputtype ... 121
irin ... 125
irout .. 127
kbin ... 129
keyin .. 131
kbled (keyled) ... 133
let ... 134
let dirs / dirsc = .. 136
let dirsA / dirsB / dirsC / dirsD = ... 137
let pins / pinsc = ... 138
let pinsA / pinsB / pinsC / pinsD = ... 139
lookdown .. 140
lookup .. 141
low ... 142
low portc .. 143
nap ... 144
on...goto .. 145
on...gosub .. 146
output .. 147
owin .. 148
owout .. 149
pause ... 150
pauseus .. 151
peek ... 152
peeksfr ... 154
play ... 155
poke ... 156
pokesfr ... 158
pullup .. 159
pulsin ... 160
pulsout ... 161
put ... 162
pwm ... 163
pwmduty ... 164
pwmout .. 165
random ... 168
read ... 169
readadc .. 170
readadc10 ... 171
readdac .. 172
readdac10 ... 173
readi2c ... 174
readinternaltemp ... 175

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

3

3

www.picaxe.com

readfirmware ... 177
readmem ... 178
readtable .. 179
readoutputs .. 180
readportc .. 181
readrevision .. 182
readsilicon .. 183
readtemp .. 184
readtemp12 ... 185
readowclk ... 186
resetowclk ... 187
readowsn .. 188
reconnect ... 190
reset .. 191
restart .. 192
resume ... 193
return ... 194
reverse ... 195
rfin ... 196
rfout .. 198
run ... 200
select case \ case \ else \ endselect ... 203
serin .. 204
serrxd ... 207
serout .. 208
sertxd ... 210
servo .. 211
servopos ... 213
setbit ... 214
setint ... 215
setintflags .. 219
setfreq .. 221
settimer .. 223
shiftin (spiin) .. 225
shiftout (spiout) .. 228
sleep .. 230
sound ... 231
srlatch .. 232
srset / srreset .. 234
stop ... 235
suspend .. 236
swap .. 237
switch on/off .. 238
symbol ... 239
table .. 240
tablecopy .. 241
tmr3setup ... 242
toggle .. 244
togglebit .. 245
touch ... 246
touch16 .. 247
tune ... 250
uniin .. 257
uniout .. 258
wait ... 260
write .. 261
writemem .. 262
writei2c .. 263
Appendix 1 - Commands .. 264
Appendix 2 - Additional (non-command) reserved words 265
Appendix 3 - Reserved Labels .. 266
Appendix 4 - Possible Conflicting Commands ... 267
Appendix 5 - X2 Variations .. 268
Appendix 6 - M2 Variations ... 269
Manufacturer Website: .. 270
Trademark: .. 270
Acknowledgements: .. 270

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

4

4

www.picaxe.com

BASIC COMMANDS

Introduction.

The PICAXE manual is divided into three sections:

Section 1 - Getting Started

Section 2 - BASIC Commands

Section 3 - Microcontroller interfacing circuits

This second section provides the syntax (with detailed examples) for all the BASIC

commands supported by the PICAXE system. It is intended as a lookup reference guide

for each BASIC command supported by the PICAXE system. As some commands only

apply to certain size PICAXE chips, a diagram beside each command indicates the sizes

of PICAXE that the command applies to.

When using the flowchart method of programming, only a small subset of the available

commands are supported by the on-screen simulation. These commands are indicated

by the corresponding flowchart icon by the description.

For more general information about how to use the PICAXE system, please see section 1

‘Getting Started’.

PICAXE Software

The main Windows application used for programming the PICAXE chips is called the

‘PICAXE Programming Editor’. This software is free of charge to PICAXE users.

Please see section 1 of the manual (‘Getting Started’) for installation details and

tutorials. Please ensure that you are using the latest version, the software is a free

download from www.picaxe.com

AXEpad is a simpler free version of the Programming Editor software for use on the

Linux and Mac operating systems. It also supports all the BASIC commands in this

manual.

Logicator for PIC micros is a flowcharting application designed for educational use.

Programs are developed as graphical flowcharts on screen. These flowcharts are then

automatically converted into BASIC files for download into the PICAXE chips.

PICAXE VSM is a Berkeley SPICE circuit simulator, which will simulate complete

electronic circuits using PICAXE chips. The BASIC program can be stepped through line

by line whilst watching the input/output peripheral react to the program.

The latest version of the software is available on the PICAXE website at

www.picaxe.com

If you have a question about any command please post a question on the very active

support forum at this website

www.picaxeforum.co.uk

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

5

5

www.picaxe.com

Labels

Labels are used as markers throughout the program. Labels are used to mark a

position in the program to ‘jump to’ from another position using a goto, gosub

or other command. Labels can be any word (that is not already a reserved

keyword) and may contain digits and the underscore character. Labels must start

with a letter or underscore (not digit), and are followed directly by a colon (:) at

the marker position. The colon is not required within the actual commands.

The compiler is not case sensitive (lower and/or upper case may be used at any

time).

Example:

main:

high B.1 ; switch on output 1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output 1

pause 5000 ; wait 5 seconds

goto main ; loop back to start

Whitespace

Whitespace is the term used by programmers to define the white area on a

printout of the program. This involves spaces, tabs and empty lines. Any of these

features can be used to space the program to make it clearer and easier to read.

It is convention to only place labels on the left hand side of the screen. All other

commands should be indented by using the ‘tab key’. This convention makes the

program much easier to read and follow.

Newline

Commands are normally placed on separate lines. However if desired the colon

(:) character can be use to separate multiple commands on a single line e.g.

if pin1 = 1 then : high 1 : else : low 1 : endif

Line continuation

Long lines can be continued onto a second line by using an underscore e.g.

if pin1 = 1 then gosub _

label1 ; continued on second line

Code Collapsing

On long programs in Programming Editor the { and } brackets can be used to

collapse (“hide”) sections of code to make programs clearer e.g.

{

 high 1

}

Comments

Comments are used to add information into the program for future reference.

They are completely ignored by the computer during a download. Comments

begin with an apostrophe (‘) or semicolon (;) and continue until the end of the

line. The keyword REM may also be used for a comment.

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

6

6

www.picaxe.com

Multiple lines can be commented by use of the #REM and #ENDREM directives.

Examples:

high 0 ; make output 0 high

low 0 REM make output 0 low

#rem ; #rem out a number of lines

high 0

pause 2000

#endrem

Constants

Constants are ‘fixed’ numbers that are used within the program. The software

supports word integers (any whole number between 0 and 65535).

Constants can be declared in four ways: decimal, hex, binary and ASCII.

Decimal numbers are typed directly without any prefix.

Hexadecimal (hex) numbers are preceded with a dollar-sign ($) or (0x).

Binary numbers are preceded by a percent-sign (%).

ASCII text strings are enclosed in quotes (“).

Examples:

100 ; 100 decimal

$64 ; 64 hex

0x64 ; 64 hex

%01100100 ; 01100100 binary

“A” ; “A” ascii (65)

“Hello” ; “Hello” - equivalent to “H”,”e”,”l”,”l”,”o”

B1 = B0 ^ $AA ; xor variable B0 with AA hex

Symbols

Symbols can be assigned to constant values, and can also be used as alias names

for variables (see Variables overleaf for more details). Constant values and

variable names are assigned by following the symbol name with an equal-sign

(=), followed by the variable or constant. Symbols can use any word that is not a

reserved keyword (e.g. switch, step, output, input, etc. cannot be used)

Symbols can contain numeric characters and underscores (flash1, flash_2 etc.)

but the first character cannot be numeric (e.g. 1flash). Simple constant maths is

also available. See the symbol command entry later in this manual for more

information. The use of symbols does not increase program length.

Example:

symbol RED_LED = B.7 ; define a constant symbol

symbol COUNTER = b0 ; define a variable symbol

let COUNTER = 200 ; preload variable with value 200

mainloop: ; define a program address

; address symbol end with colons

high RED_LED ; switch on output B.7

pause COUNTER ; wait 0.2 seconds

low RED_LED ; switch off output B.7

pause COUNTER ; wait 0.2 seconds

goto mainloop ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

7

7

www.picaxe.com

Directives

Directives are used by the software to set the current PICAXE type and to

determine which sections of the program listing are to be compiled. Directives

are therefore not part of the PICAXE program, they are instructions to the

software compiler.

All directives start with a # and must be used on a single line. Any other non-

relevant line content after the directive is ignored.

Directives marked Programming Editor Only are only supported by the PICAXE

Programming Editor software and will not work with third party applications.

#picaxe xxx
Set the compiler mode. This directive also automatically defines a label of the

PICAXE type e.g. #picaxe 08m2 is also the equivalent of #define 08m2. If no

#picaxe directive is used the system defaults to the currently selected PICAXE

mode (View>Options>Mode menu within Programming Editor).

Example: #picaxe 08m2

#com device
Set the serial/USB COM port for downloading.

Examples:
#com 1 (Windows AXE026 serial)
#com 6 (Windows AXE027 USB*)
#com /dev/ttyS0 (Linux AXE026 serial)
#com /dev/ttyUSB0 (Linux AXE027 USB*)
#com /dev/tty.usbserial-xxxx (Mac AXE027 USB*)
#com 1 (Windows CE AXE027 USB*)
#com /dev/tty.iap (iPhone/iPod Touch AXE026 serial)

Note that on Linux systems the COM port device name is actually one less than the

COM port, so COM1 is“/dev/ttyS0” On Mac systems xxxx is a unique serial number.

Device names are also case sensitive - type exactly as shown.

*See the AXE027 USB cable datasheet for more details.

#slot number
Select the internal program slot (0-3) or i2c program slot (4-7) on X2 parts.

#revision number
Set the user program version (1-254) on X2 parts.

#no_data
Do not download EEPROM data (only active on parts where program and data

are separate).

#no_table
Do not download table or EEPROM data (X1 and X2 parts only). This

automatically also enables #no_data

#no_end
Do not automatically add an ‘end’ command to the end of the program.

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

8

8

www.picaxe.com

#freq m4/m8/m16
Set the default system clock download frequency for 28X/40X parts only.

Not required for any other parts that automatically use their internal resonator.

Example: #freq m8

#define label
Defines a label to use in an ifdef or ifndef statements.

Example: #define clock8
Do not confuse the use of #define and symbol =

#define is a directive and, when used with #ifdef, determines which sections of code are

going to be compiled.

‘symbol = ’ is a command used within actual programs to re-label variables and pins.

#undefine label
Removes a label from the current defines list

Example: #undefine clock8

#ifdef / #ifndef label
#else
#endif
Conditionally compile code depending on whether a label is defined (#ifdef) or

not defined (#ifndef).

Example: #define clock8
#ifdef clock8

let b1 = 8
#else

let b1 = 4
#endif

#error “comment”
Force a compiler error at the current position

Example: #error “Code not finished!”

#rem / #endrem
Comment out multiple lines of text.

Example:
#rem
high 0
pause 1000
low 0
#endrem

#include “filename”
Include code from a separately saved file within this program.

Example: #include “c:\test.bas”
NOTE: Reserved for future use. Not currently implemented.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

9

9

www.picaxe.com

Programming Editor Only Directives

#simtask all/0/1/2/3 Programming Editor Only

The task to follow during simulation when using parallel multi-tasking M2 parts.

If no task is specified task 0 will be automatically traced.

Multiple tasks can also be traced at the same time by using ‘all’

Examples: #simtask 1
#simtask all

#sim axe101/axe102/axe103/axe105/axe107/axe092 Programming Editor Only

Use a ‘simulated project kit’ on screen whist simulating

Example: #sim axe105

#simspeed value Programming Editor Only

Set the simulation delay (in milliseconds) between commands

Example: #simspeed 200

#terminal off/300/600/1200/4800/9600/19200/38400 Programming Editor Only

Configure the Serial Terminal to open after a download (at selected baud rate)

Example: #terminal 4800

#gosubs 16/255 Programming Editor Only

Set the gosubs mode (16/255) on older 18X / 28X parts.

Example: #gosubs 16

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

10

10

www.picaxe.com

Variables - General

The RAM memory is used to store temporary data in variables as the program

runs. It loses all data when the power is removed or reset. There are four types of

RAM variables - general purpose, scratchpad, storage, and special function.

See the ‘let’ command for details about variable mathematics.

General Purpose Variables.

Bytes Bit Name Byte Name Word Name
X2 parts 56 bit0-31 b0-55 w0-27

X1 parts 28 bit0-31 b0-27 w0-13

M2 parts 28 bit0-31 b0-27 w0-13

Older parts 14 bit0-15 b0-13 w0-6

There are 14 (or more) general purpose byte variables. These byte variables are

labelled b0, b1 etc... Byte variables can store integer numbers between 0 and 255

inclusive. Byte variables cannot use negative numbers or fractions, and will

‘overflow’ without warning if you exceed the 0 or 255 boundary values (e.g. 254

+ 3 = 1) (2 - 3 = 255)

However for larger numbers two byte variables can be combined to create a word

variable, which is capable of storing integer numbers between 0 and 65535

inclusive. These word variables are labelled w0, w1, w2 etc... and are constructed

as follows:

w0 = b1 : b0

w1 = b3 : b2

w2 = b5 : b4

w3 = b7 : b6

etc...

Therefore the most significant byte of w0 is b1, and the least significant byte of

w0 is b0.

In addition there are up to 32 individual bit variables (bit0, bit1 etc..). These bit

variables can be used where you just require a single bit (0 or 1) storage

capability. Bit variables are part of the lower value byte variables e.g.

b0 = bit7: bit6: bit5: bit4: bit3: bit2: bit1: bit0

b1 = bit15: bit14: bit13: bit12: bit11: bit10: bit9: bit8

etc...

You can use any word, byte or bit variable within any mathematical assignment

or command that supports variables. However take care that you do not

accidentally repeatedly use the same ‘byte’ or ‘bit’ variable that is being used as

part of a ‘word’ variable elsewhere.

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

11

11

www.picaxe.com

Indirect Addressing of General Purpose Variables (M2/X2 parts)

On these parts there are up to 256 general purpose variables. The lower bytes,

known as b0, b1, b2 etc upwards, can be used directly in any command (as with

all other PICAXE parts). All 256 bytes (0-255) can also be addressed both

directly and indirectly.

To directly address the values the peek (read the byte) and poke (write the byte)

commands are used. To indirectly address the values the virtual variable name

‘@bptr’ is used. @bptr is a variable name that can be used in any command (ie as

where a ‘b1’ variable would be used). However the value of the variable is not

fixed (as with b1) , but will contain the current value of the byte currently

‘pointed to’ by the byte pointer (bptr).

The compiler also accepts ‘@bptrinc’ (post increment) and ‘@bptrdec’ (post

decrement) .

Every time the ‘@bptrinc’ variable name is used in a command the value of the

byte pointer is automatically incremented by one (ie bptr = bptr+1 occurs

automatically after the read/write of the value @bptr). This makes it ideal for

storage of a single dimensional array of data.

Variables - Storage

Storage variables are additional memory locations allocated for temporary storage

of byte data. They cannot be used in mathematical calculations, but can be used

to temporarily store byte values by use of the peek and poke commands.

The number of available storage locations varies depending on PICAXE type. The

following table gives the number of available byte variables with their addresses.

These addresses vary according to technical specifications of the microcontroller.

See the poke and peek command descriptions for more information.

08M2 99 28 to 127 ($1C to $7F)

18M2 227 28 to 255 ($1C to $FF)

18M2+, 14M2, 20M2 483 28 to 511 ($1C to $1FF)

28X2, 40X2 200 56 to 255 ($38 to $FF)

20X2 72 56 to 127 ($38 to $7F)

All X1 parts 95 80 to 126 ($50 to $7E), 192 to 239 ($C0 to $EF)

All X1 and X2 parts also have the additional scratchpad memory, see next page.

Older discontinued parts:

All M parts 48 80 to 127 ($50 to $7F)

All A parts 48 80 to 127 ($50 to $7F)

18X 96 80 to 127 ($50 to $7F), 192 to 239 ($C0 to $EF)

28X, 40X 112 80 to 127 ($50 to $7F), 192 to 255 ($C0 to $FF)

08 none

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

12

12

www.picaxe.com

Variables - Scratchpad

The scratchpad is a temporary memory area for storage of data such as arrays.

PICAXE-28X1, 40X1, 20X2 parts have 128 scratchpad bytes (0-127)

PICAXE-28X2, 40X2 parts have 1024 scratchpad bytes (0-1023)

To directly address the scratchpad values the get (read the byte) and put (write

the byte) commands are used.

To indirectly address the values the virtual variable name ‘@ptr’ is used. @ptr is a

variable name that can be used in any command (ie as where a ‘b1’ variable

would be used). However the value of the variable is not fixed (as with b1) , but

will contain the current value of the byte currently ‘pointed to’ by the pointer

(ptr).

The compiler also accepts ‘@ptrinc’ (post increment) and ‘@ptrdec’ (post

decrement) . Every time the ‘@ptrinc’ variable name is used in a command the

value of the scratchpad pointer is automatically incremented by one (ie ptr =

ptr+1 occurs automatically after the read/write of the value @ptr). This makes it

ideal for storage of a single dimensional array of data.

ptr = 1 ‘ reset scratchpad pointer to 1

serrxd @ptrinc,@ptrinc,@ptrinc,@ptrinc,@ptr

‘ serin 5 bytes to scratchpad addresses 1-5

ptr = 1 ‘ reset scratchpad pointer to 1

for b1 = 1 to 5

 sertxd (@ptrinc) ‘ re-transmit those 5 values

next b1

See the put and get commands for more details.

		
		

����
����

		
����
����

		
		
		

		
		
		
		
		

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

13

13

www.picaxe.com

Variables - System

The M2 parts have 8 word variables which are reserved for system hardware use.

However if that piece of system hardware is not used within a program the

variables may be used as general purpose variables.

s_w0 task current task (during parallel processing)

s_w1 - reserved for future use

s_w2 - reserved for future use

s_w3 - reserved for future use

s_w4 - reserved for future use

s_w5 - reserved for future use

s_w6 - reserved for future use

s_w7 time elapsed time

The X1 and X2 parts have 8 word variables and 1 flags byte which are reserved for

system hardware use. However if that piece of system hardware is not used within

a program the variables may be used as general purpose variables.

s_w0 - reserved for future use

s_w1 - reserved for future use

s_w2 adcsteup2 high word of adcsetup (28X2 only)

s_w3 timer3 timer3 value (X2 only)

s_w4 compvalue comparator results (X2 only)

s_w5 hserptr hardware serin pointer

s_w6 hi2clast hardware hi2c last byte written (slave mode)

s_w7 timer timer value

The ‘flags’ byte variable is made up of 8 bit variables

flag0 hint0flag X2 only - interrupt on B.0

flag1 hint1flag X2 only - interrupt on B.1

flag2 hint2flag X2 only - interrupt on B.2

flag3 hintflag X2 only - interrupt on any of above

flag4 compflag X2 only - occurs on any comparator change

flag5 hserflag hserial background receive has occurred

flag6 hi2cflag hi2c write has occurred (slave mode)

flag7 toflag timer overflow flag

		
		

����
����

		
����
����

		
		

����

		
		
		

����
		

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

14

14

www.picaxe.com

Variables - Special function

The special function variables available for use depend on the PICAXE type:

PICAXE-08 / 08M / 08M2 Special Function Registers

pins = the input / output port

dirs = the data direction register (sets whether pins are inputs or outputs)

infra = another term for variable b13, used within the 08M infrain2 command

Additional 08M2 Special Function Registers

bptr - the byte RAM pointer

@bptr - the byte RAM value pointed to by bptr

@bptrinc - the byte RAM value pointed to by bptr (post increment)

@bptrdec - the byte RAM value pointed to by bptr (post decrement)

time - the current time (seconds counter at 4MHz or 16MHz)

task - the current task

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = x : x : x : pin4 : pin3 : pin2 : pin1 : x

The variable dirs is also broken down into individual bits.

Only valid bi-directional pin configuration bits are implemented.

dirs = x : x : x : dir4 : x : dir2 : dir1 : x

��
���

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

15

15

www.picaxe.com

PICAXE-14M2 / 18M2 / 20M2 Special Function Registers

pinsB - the portB input pins

outpinsB - the portB output pins

dirsB - the portB data direction register

pinsC - the portC input pins

outpinsC - the portC output pins

dirsC - the portC data direction register

bptr - the byte RAM pointer

@bptr - the byte RAM value pointed to by bptr

@bptrinc - the byte RAM value pointed to by bptr (post increment)

@bptrdec - the byte RAM value pointed to by bptr (post decrement)

time - the current time (seconds counter at 4MHz or 16MHz)

task - the current task

When used on the left of an assignment ‘pins’ applies to the ‘output’ pins e.g.

let outpinsB = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input pins e.g.

let b1 = pinsB

will load b1 with the current state of the input pin on portB.

The variable pinsX is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented e.g.

pinsB = pinB.7 : pinB.6 : pinB.5 : pinB.4 :

pinB.3 : pinB.2 : pinB.1 : pinB.0

The variable outpinX is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented. e.g.

outpinsB = outpinB.7 : outpinB.6 : outpinB.5 : outpinB.4 :

outpinB.3 : outpinB.2 : outpinB.1 : outpinB.0

The variable dirsX is broken down into individual bit variables for setting inputs/

outputs directly e.g.

dirsB = dirB.7 : dirB.6 : dirB.5 : dirB.4 :

dirB.3 : dirB.2 : dirB.1 : dirB.0

See the ‘Variables - General’ section for more information about

@bptr, @bptrinc, @bptrdec

		
����

		
����

		

		
		
		

����
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

16

16

www.picaxe.com

PICAXE-14M/20M Special Function Registers (NOT 14M2 / 20M2)

pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

14M pins = x : x : x : pin4 : pin3 : pin2 : pin1 : pin0

20M pins = pin7 to pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

14M outpins = x : x : outpin5 : outpin4 : outpinx :out pin2 : outpin1 : outpin0

20M outpins = outpin7 to outpin0

���
		

���
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

17

17

www.picaxe.com

PICAXE-18 / 18A / 18M / 18X Special Function Registers (NOT 18M2)

pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a variable used within the infrain command (=B13 on 18M)

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : x : x : x : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 : out pin2 : outpin1 : outpin0

��
���
���

		
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

18

18

www.picaxe.com

PICAXE-28A / 28X / 40X Special Function Registers

pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 : out pin2 : outpin1 : outpin0

���
���
		
		

���
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

19

19

www.picaxe.com

PICAXE-28X1 / 40X1 Special Function Registers

pins = the input port when reading from the port

outpins = the output port when writing to the port

ptr = the scratchpad pointer

@ptr = the scratchpad value pointed to by ptr

@ptrinc = the scratchpad value pointed to by ptr (post increment)

@ptrdec = the scratchpad value pointed to by ptr (post decrement)

flags = system flags

When used on the left of an assignment ‘outpins’ applies to the ‘output’ port e.g.

let outpins = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 : out pin2 : outpin1 : outpin0

The scratchpad pointer variable is broken down into individual bit variables:

ptr = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0

See the ‘Variables - Scratchpad’ section for more information about

@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special

hardware feature of the flag is not used in a program the individual flag may be

freely used as a user defined bit flag.

Name Special Special function
flag0 - reserved for future use

flag1 - reserved for future use

flag2 - reserved for future use

flag3 - reserved for future use

flag4 - reserved for future use

flag5 hserflag hserial background receive has occurred

flag6 hi2cflag hi2c write has occurred (slave mode)

flag7 toflag timer overflow flag

		
		

����
		

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

20

20

www.picaxe.com

PICAXE-20X2 / 28X2 / 40X2 Special Function Registers

pinsA -the portA input pins

dirsA - the portA data direction register

pinsB - the portB input pins

dirsB - the portB data direction register

pinsC - the portC input pins

dirsC - the portC data direction register

pinsD - the portD input pins

dirsD - the portD data direction register

bptr - the byte RAM pointer

@bptr - the byte RAM value pointed to by bptr

@bptrinc - the byte RAM value pointed to by bptr (post increment)

@bptrdec - the byte RAM value pointed to by bptr (post decrement)

ptr - the scratchpad pointer (ptrh : ptrl)

@ptr - the scratchpad value pointed to by ptr

@ptrinc - the scratchpad value pointed to by ptr (post increment)

@ptrdec - the scratchpad value pointed to by ptr (post decrement)

flags - system flags

When used on the left of an assignment ‘pins’ applies to the ‘output’ pins e.g.

let pinsB = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input pins e.g.

let b1 = pinsB

will load b1 with the current state of the input pin on portB.

The variable pinsX is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented e.g.

pinsB = pinB.7 : pinB.6 : pinB.5 : pinB.4 :

pinB.3 : pinB.2 : pinB.1 : pinB.0

The variable outpinX is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented. e.g.

outpinsB = outpinB.7 : outpinB.6 : outpinB.5 : outpinB.4 :

outpinB.3 : outpinB.2 : outpinB.1 : outpinB.0

The variable dirsX is broken down into individual bit variables for setting inputs/

outputs directly e.g.

dirsB = dirB.7 : dirB.6 : dirB.5 : dirB.4 :

dirB.3 : dirB.2 : dirB.1 : dirB.0

The byte scratchpad pointer variable is broken down into individual bit variables:

bptrl = bptr7 : bptr6 : bptr5 : bptr4 : bptr3 : bptr2 : bptr1 : bptr0

See the ‘Variables - General’ section for more information about

@bptr, @bptrinc, @bptrdec

		
		
		

����

		
		

����

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

21

21

www.picaxe.com

The scratchpad pointer variable is broken down into individual bit variables:

ptrl = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0

ptrh = xxxx : xxxx : xxxx : xxxx : xxxx : xxxx : ptr9 : ptr8

See the ‘Variables - Scratchpad’ section for more information about

@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special

hardware feature of the flag is not used in a program the individual flag may be

freely used as a user defined bit flag.

Name Special Special function
flag0 hint0flag hardware interrupt on pin INT0

flag1 hint1flag hardware interrupt on pin INT1

flag2 hint2flag hardware interrupt on pin INT2

flag3 hintflag hardware interrupt on any pin 0,1,2

flag4 compflag hardware interrupt on comparator

flag5 hserflag hserial background receive has occurred

flag6 hi2cflag hi2c write has occurred (slave mode)

flag7 toflag timer overflow flag

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

22

22

www.picaxe.com

Variables - Mathematics

The PICAXE microcontrollers support word (16 bit) mathematics. Valid integers

are 0 to 65535. All internal mathematics is 16 bit, however when, for instance,

the output target is a byte (8 bit) variable (0-255), if the result of the internal

calculation is greater than 255 overflow will occur without warning.

Maths is performed strictly from left to right. Unlike some computers and

calculators, the PICAXE does not give * and / priority over + and -.

Therefore 3+4x5 is calculated as

3+4=7

7x5=35

The microcontroller does not support fractions or negative numbers. However it

is sometimes possible to rewrite equations to use integers instead of fractions, e.g.

let w1 = w2 / 5.7
is not valid, but

let w1 = w2 * 10 / 57
is mathematically equal and valid.

The mathematical functions supported by all parts are:

+ ; add

- ; subtract

* ; multiply (returns low word of result)

** ; multiply (returns high word of result)

/ ; divide (returns quotient)

// % ; modulus divide (returns remainder)

MAX ; limit value to a maximum value

MIN ; limit value to a minimum value

AND & ; bitwise AND

OR | ; bitwise OR (typed as SHIFT + \ on UK keyboard)

XOR ^ ; bitwise XOR (typed as SHIFT + 6 on UK keyboard)

NAND ; bitwise NAND

NOR ; bitwise NOR

XNOR ^/ ; bitwise XNOR

ANDNOT &/ ; bitwise AND NOT (NB this is not the same as NAND)

ORNOT |/ ; bitwise OR NOT (NB this is not the same as NOR)

The X1 and X2 parts also support

<< ; shift left

>> ; shift right

*/ ; multiply (returns middle word of result)

DIG ; return the digit value

REV ; reverse a number of bits

All mathematics is performed strictly from left to right.

��
���

����

��
���
���

����
���

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

23

23

www.picaxe.com

On X1 and X2 parts it is possible to enclose part equations in brackets e.g.

let w1 = w2 / (b5 + 2)

On all other chips it is not possible to enclose part equations in brackets e.g.

let w1 = w2 / (b5 + 2)
is not valid. This would need to be entered in equivalent form e.g.

let w1 = b5 + 2
let w1 = w2 / w1

Further Information:

Addition and Subtraction
The addition (+) and subtraction (-) commands work as expected. Note that the

variables will overflow without warning if the maximum or minimum value is

exceeded (0-255 for bytes variables, 0-65535 for word variables).

Multiplication and Division
When multiplying two 16 bit word numbers the result is a 32 bit (double word)

number. The multiplication (*) command returns the low word of a word*word

calculation. The ** command returns the high word of the calculation and */

returns the middle word.

Therefore in normal maths $aabb x $ccdd = $eeffgghh

In PICAXE maths

$aabb * $ccdd = $gghh

$aabb ** $ccdd = $eeff

The X1 and X2 parts also support return of the middle word

$aabb */ $ccdd = $ffgg

The division (/) command returns the quotient (whole number) word of a

word*word division. The modulus (// or %) command returns the remainder of

the calculation.

Max and Min
The MAX command is a limiting factor, which ensures that a value never exceeds

a preset value. In this example the value never exceeds 50. When the result of the

multiplication exceeds 50 the max command limits the value to 50.

let b1 = b2 * 10 MAX 50
if b2 = 3 then b1 = 30

if b2 = 4 then b1 = 40

if b2 = 5 then b1 = 50

if b2 = 6 then b1 = 50 ‘ limited to 50

The MIN command is a similar limiting factor, which ensures that a value is never

less than a preset value. In this example the value is never less than 50. When the

result of the division is less than 50 the min command limits the value to 50.

let b1 = 100 / b2 MIN 50
if b2 = 1 then b1 = 100

if b2 = 2 then b1 = 50

if b2 = 3 then b1 = 50 ‘ limited to 50

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

24

24

www.picaxe.com

AND, OR, XOR, NAND, NOR, XNOR, ANDNOT, ORNOT
The AND, OR, XOR, NAND, NOR, XNOR commands function bitwise on each

bit in the variables. ANDNOT and ORNOT mean, for example ‘A AND the NOT

of B’ etc. This is not the same as NOT (A AND B), as with the traditional NAND

command.

A common use of the AND (&) command is to mask individual bits:

let b1 = pins & %00000110
This masks inputs 1 and 2, so the variable only contains the data of these two

inputs.

<< , >>
Shift left (or shift right) have the same effect as multiplying (or dividing) by 2. All

bits in the word are shifted left (or right) a number of times. The bit that ‘falls off’

the left (or right) side of the word is lost.

let b1 = %00000110 << 2

DIG
The DIG (digit) command returns the decimal value of a specified digit (0-4,

right to left) of a 16 bit number. Therefore digit 0 of ‘67890’ is 0 and digit 3 is ‘7’.

To return the ASCII value of the digit simply add string “0” to the digit value e.g.

let b1 = b2 DIG 0 + “0”
See also the BINTOASCII and BCDTOASCII commands.

REV
The REV (reverse) command reverses the order of the specified number of bits of

a 16 bit number. Therefore to reverse the 8 bits of %10110000 (to %00001101)

the command would be

let b1 = %10110000 REV 8

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

25

25

www.picaxe.com

Variables - Unary Mathematics

All parts support the NOT unary command e.g.

let b1 = NOT pins

All parts support the unary minus command e.g.

let b1 = -b1

The X1 and X2 parts also support these unary commands

SIN ; sine of angle (0 to 65535) in degrees

COS ; cosine of angle in degrees

SQR ; square root

INV ; invert / complement

NCD ; encoder (2n power encoder)

DCD ; decoder (2n power decoder)

BINTOBCD ; convert binary value to BCD

BCDTOBIN ; convert BCD value to binary

NOB ; count number of set bits (X2 only)

ATAN ; calculate the arctan of a value (result 0-45 degrees) (X2 only)

Unary commands must be the first command on a program line. However they

may be followed by additional mathematical commands eg.

let b1 = sin 30 + 5 is valid

let b1 = 5 + sin 30 is not valid as the unary command is not first

Further Information:

NOT
The NOT function inverts a value.

e.g let b1 = NOT %01110000 (answer b1 = %10001111)

SIN and COS
The sin function returns a number equivalent to the sine of the value in degrees.

The system uses a 45 step lookup table in each quadrant, giving a very fast, and

reasonably accurate, result.

The sine function only works on positive whole integers. However as all sin and

cos values repeat every 360 degrees, simply add 360 to make a negative value

positive. e.g. sin (-30) is the same as sin (330) (-30 + 360)

As the real sine value is always a value between 1 and -1, a coding system is used

to increase the accuracy when working with PICAXE whole integers. The value

returned by the sin function is actually 100 x the real sine value. Therefore in

normal mathematics sin 30 = 0.5. In PICAXE mathematics this is returned as 50

(100*0.5). This coding method provides a sine function accuracy equivalent to

two decimal places.

e.g let b1 = sin 30 (answer b1 = 50)

Negative numbers are indicated by setting bit 7 of the returned byte. This has the

effect of making negative values appear as 128 + the expected value.

e.g let b1 = sin 210 (answer b1 = 128+50 = 178)

		
		
		

		
		

		
		
		
		
		

		
		

����
����

		
����
����

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

26

26

www.picaxe.com

The cos function operates in an identical manner.

SQR
The square root function returns the whole integer square root, according to 10

iterations of a N-R formula, using a seed of value/2. This formula provides a fast

and accurate result. Note that as the PICAXE chip only operates with whole

integers, the result will be rounded down to the nearest whole value.

e.g let b1 = sqr 64 (answer b1 = 8)

INV (~)
The invert function complements each bit in the value (ie each 0 is changed to a

1 and each 1 is changed to 0).

e.g let b1 = ~ %10101010 (answer b1 = %01010101)

NCD
The encoder function takes a value and finds the position of the highest bit in

that number that is a 1. Therefore the result will be a number 1 to 16, when bit15

is 1 the answer is 16, when only bit0 is 1 the value is 1. If the value is 0, the result

will be 0.

e.g let b1 = ncd %00000100 (answer b1 = 3)

DCD
The decoder function takes a value between 0 and 15 and returns a 16 bit

number, with that value bit set to 1.

e.g let b1 = dcd 3 (answer b1 = %00001000)

let w1 = dcd 8 (answer w1 = %100000000)

BINTOBCD
The bintobcd function converts a value to binary coded decimal. Note that the

maximum value that can be returned within a byte is 99, or 9999 within a word.

e.g let b1 = bintobcd 99 (answer b1 = %10011001=$99)

BCDTOBIN
The bcdtobin function converts a binary coded decimal value to normal binary.

e.g let b1 = bcdtobin $99 (answer b1 = 99)

NOB (X2 only)
The nob function counts the number of bits that are set.

e.g let b1 = NOB %10100111 (answer b1 = 5)

ATAN (X2 only)
The atan function provides an arctan function for angles between 0 and 45

degrees. This is useful, for example, for calculating robot direction paths.

As the arctan input is always a value between 0 and 1, a coding system is used to

increase the accuracy when working with PICAXE whole integers. The value used

by the atan function is actually 100 x the real atan value (e.g. 0.39 = 39)

e.g let b1 = atan 100 (answer b1 = 45)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

27

27

www.picaxe.com

Input / Output Pin Naming Conventions

The first PICAXE chips had a maximum of 8 input and 8 output pins, so there

was no need for a port naming scheme, as there was only one default input port

and one default output port for each chip.

Therefore input and outputs pins were just referred to by their pin number

e.g. Output commands Input Commands

high 1 count 2, 100, w1

sound 2, (50,50) pulsin 1, 1, w1

serout 3, N2400, (b1) serin 0, N2400, b3

However on later M2 and X2 PICAXE parts more flexibility was added by

allowing almost all of the pins to be configured as inputs or outputs as desired.

This creates more than 8 inputs or outputs and an amended naming scheme is

therefore required. Therefore the pins on these parts are referred to by the new

PORT.PIN notation. Up to 4 ports (A, B, C, D) are available, depending on chip

pin count.

e.g. Output commands Input Commands

high B.1 count A.2, 100, w1

sound C.2, (50,50) pulsin B.1, 1, w1

serout A.3, N2400, (b1) serin C.0, N2400, b3

In the case of if...then statements which check the status of the input pin variable,

the naming convention of these input pin variables have changed in a similar

style from

if pin1 =1 then...

to

if pinC.1 = 1 then...

The name of the input pins byte for each port is changed from

pins

to

pinsA, pinsB, pinsC, pinsD

The name of the output pins byte for each port is changed from

outpins

to

outpinsA, outpinsB, outpinsC, outpinsD

The name of the data direction register for each port is changed from

dirs

to

dirsA, dirsB, dirsC, dirsD

This manual generally uses the newer PORT.PIN format in the examples unless an

example is specifically for an older part.

Please see the pinout diagrams (in part 1 of the PICAXE manual) for the chip you

are using. Note that input / output pin numbers used within commands are not

the same as the physical leg numbers!

��
���

����

��
���
���

����
���

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

28

28

www.picaxe.com

adcconfig

Syntax:

adcconfig config
- config is a constant/variable specifying the adc configuration

Function:

Configure the ADC reference voltages

Information:

The default Vref+signal for the ADC is the power supply (V+) and the default

Vref- signal is 0V, so the analogue voltage range is the same as the power supply

to the PICAXE chip. However, if desired, the Vref signals can be altered to

external pins instead by using adcconfig command.

PICAXE X2 PARTS

Bit 3,2 = 11 do not use

= 10 VRef+ is FVR (see FVRsetup command)

= 01 VRef+ is external pin

= 00 VRef+ is V+ (power supply)

Bit 1,0 = 11 do not use

= 10 do not use

= 01 VRef- is external pin

= 00 VRef- is 0V

PICAXE M2 PARTS

Bit 2 = 1 VRef- is external pin (if available)

= 0 VRef- is 0V

Bit 1,0 = 11 VRef+ is FVR (see FVRsetup command)

= 10 VRef+ is external pin (if available)

= 01 do not use

= 00 VRef+ is V+ (power supply)

PICAXE External Vref+ pin External Vref- Pin
08M2 C.1 n/a

14M2 B.1 n/a

18M2 n/a C.2

20M2 B.0 n/a

28X2 A.3 A.2

40X2 A.3 A.2

Example (18M2):

fvrsetup FVR2048 ; set FVR as 2.048V

adcconfig %011 ; set FVR as ADC Vref+, 0V Vref-

		
		

����

		
		
		

����
		

		
����

		
����

		

		
		
		

����

		
		

����

���������	
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

29

29

www.picaxe.com

		
		

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

adcsetup

Syntax:

{let} adcsetup = channels
- Channels is the number / mask of ADC to enable.

Function:

On X2 parts it is necessary to configure the ADC pins for use with the ‘readadc/

readadc10’ commands. On all other parts this configuration is automatic.

On M2 parts the appropriate adcsetup bit is set automatically by the ‘readadc/

readadc10/touch’ command. Therefore on these parts the only real use of

adcsetup is to change a pin back from analogue to digital setup.

Note that adcsetup is technically a variable (word length), not a command, and

so can be used in ‘let’ assignments and mathematics (e.g bit masking using &).

Using adcsetup does NOT actually ‘connect’ the internal adc to the input pin - the

adc is always connected! Using adcsetup just disconnects the digital input buffer,

so that the internal digital input circuitry does not effect the analogue reading.

Therefore readadc commands may still work without correctly configuring

adcsetup, however the analogue readings may not be as reliable as expected.

Due to advances in microcontroller technology the use of ‘adcsetup’ varies slightly

according to the part in use. Please ensure you study the correct page for the part you are

using. There are separate pages for:

PICAXE-28X2 (PIC18F25K22)

PICAXE-40X2 (PIC18F45K22)

PICAXE-28X2-5V (PIC18F2520)

PICAXE-40X2-5V (PIC18F4520)

PICAXE-28X2-3V (PIC18F25K20)

PICAXE-40X2-3V (PIC18F45K20)

PICAXE-20X2 (PIC18F14K22)

Any M2 part (08M2, 14M2, 18M2, 20M2)

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

30

30

www.picaxe.com

PICAXE-28X2 (PIC18F25K22) (not older -5V or -3V versions)

PICAXE-40X2 (PIC18F45K22) (not older -5V or -3V versions)

Individual Pin Masking

With individual pin masking any pin can be individually controlled. Setting the

bit disconnects the corresponding digital input to dedicate to analogue operation.

Note that with these parts the appropriate bit is always automatically set upon

any readadc / readadc10 / touch / touch16 command. Therefore the only real use

of this command is to turn an analogue pin back into a digital pin by clearing the

appropriate bit.

adcsetup variable

Bit 0 - ADC0 Bit 8 - ADC8

Bit 1 - ADC1 Bit 9 - ADC9

Bit 2 - ADC2 Bit 10 - ADC10

Bit 3 - ADC3 Bit 11 - ADC11

Bit 4 - ADC4 Bit 12 - ADC12

Bit 5 - ADC5 Bit 13 - ADC13

Bit 6 - ADC6 Bit 14 - ADC14

Bit 7 - ADC7 Bit 15 - not used

adcsetup2 variable

Bit 0 - ADC16 Bit 8 - ADC24

Bit 1 - ADC17 Bit 9 - ADC25

Bit 2 - ADC18 Bit 10 - ADC26

Bit 3 - ADC19 Bit 11 - ADC27

Bit 4 - ADC20 Bit 12 - not used

Bit 5 - ADC21 Bit 13 - not used

Bit 6 - ADC22 Bit 14 - not used

Bit 7 - ADC23 Bit 15 - not used

Voltage Reference

The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the

analogue voltage range is the same as the power supply to the PICAXE chip.

However, if desired, the Vref signals can be altered to external pins instead by

using the adcconfig command.

Example:

let adcsetup = %0000000000001111 ; set ADC0,1,2,3

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

31

31

www.picaxe.com

PICAXE-28X2 -5V (PIC18F2520)

PICAXE-40X2 -5V (PIC18F4520)

Sequential Masking

With sequential masking pins can only be configured for analogue readings if:

- the internal pin of the microcontroller supports analogue (see pinout)

- the pin is already configured as an input

- all ADC with a lower number are also enabled

With the sequential system , for instance, it is only possible to enable ADC3 if

ADC0-2 are also enabled. This is an internal design restraint of the PICmicro, not

the PICAXE bootstrap. The number of channels and active ADC pins are shown

below.

channels 28X2-5V 40X2-5V
0 none none

1 ADC0 ADC0

2 ADC0,1 ADC0,1

3 ADC0,1,2 ADC0,1,2

4 ADC0,1,2,3 ADC0,1,2,3

5 ADC0,1,2,3,8 ADC0,1,2,3,5

6 ADC0,1,2,3,8,9 ADC0,1,2,3,5,6

7 ADC0,1,2,3,8,9,10 ADC0,1,2,3,5,6,7

8 ADC0,1,2,3,8,9,10,11 ADC0,1,2,3,5,6,7,8

9 ADC0,1,2,3,8,9,10,11,12 ADC0,1,2,3,5,6,7,8,9

10 - ADC0,1,2,3,5,6,7,8,9,10

11 - ADC0,1,2,3,5,6,7,8,9,10,11

12 - ADC0,1,2,3,5,6,7,8,9,10,11,12

ADC4,5,6,7 do not exist on the 28X2-5V parts.

ADC4 does not exist on the 40X2-5V parts.

Voltage Reference

The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the

analogue voltage range is the same as the power supply to the PICAXE chip.

However, if desired, the Vref signals can be altered to external pins instead by

setting bits 15 and 14 of adcsetup.

Bit 15 = 1 VRef- is ADC2

= 0 VRef- is 0V

Bit 14 = 1 VRef+ is ADC3

= 0 VRef+ is V+ (power supply)

Example:

let adcsetup = 4 ; set ADC0,1,2,3 as analogue

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

32

32

www.picaxe.com

PICAXE-20X2 (PIC18F14K22)

PICAXE-28X2-3V (PIC18F25K20)

PICAXE-40X2-3V (PIC18F45K20)

Individual Pin Masking

With individual pin masking any pin can be individually controlled. Setting the

bit disconnects the corresponding digital input to dedicate to analogue operation.

Bit 0 - ADC0 Bit 8 - ADC8

Bit 1 - ADC1 Bit 9 - ADC9

Bit 2 - ADC2 Bit 10 - ADC10

Bit 3 - ADC3 Bit 11 - ADC11

Bit 4 - ADC4 Bit 12 - ADC12

Bit 5 - ADC5 Bit 13 - not used

Bit 6 - ADC6 Bit 14 - VRef+

Bit 7 - ADC7 Bit 15 - VRef- (not available on 20X2)

Voltage Reference

The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the

analogue voltage range is the same as the power supply to the PICAXE chip.

However, if desired, the Vref signals can be altered to external pins instead by

setting bits 15 and 14 of adcsetup.

Bit 15 = 1 VRef- is ADC2(28X2, 40X2) (not available on 20X2)

= 0 VRef- is 0V

Bit 14 = 1 VRef+ ADC3 (28X2, 40X2) or ADC1 (20X2)

= 0 VRef+ is V+ (power supply)

Example:

let adcsetup = %0000000000001111 ; set ADC0,1,2,3

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

33

33

www.picaxe.com

ALL M2 series parts

Individual Pin Masking

With individual pin masking any pin can be individually controlled. Setting the

bit disconnects the corresponding digital input to dedicate to analogue operation.

Note that with M2 parts the appropriate bit is always automatically set upon any

readadc / readadc10 / touch command. Therefore the only real practical use of

this command is to turn an analogue pin back into a digital pin by clearing the

appropriate bit.

08M2

Bit 1 - ADC on C.1

Bit 2 - ADC on C.2

Bit 4 - ADC on C.4

14M2, 18M2, 20M2

Bit 0 - ADC on B.0 Bit 8 - ADC on C.0

Bit 1 - ADC on B.1 Bit 9 - ADC on C.1

Bit 2 - ADC on B.2 Bit 10 - ADC on C.2

Bit 3 - ADC on B.3 Bit 11 - ADC on C.3

Bit 4 - ADC on B.4 Bit 12 - ADC on C.4

Bit 5 - ADC on B.5 Bit 13 - ADC on C.5

Bit 6 - ADC on B.6 Bit 14 - ADC on C.6

Bit 7 - ADC on B.7 Bit 15 - ADC on C.7

Voltage Reference

The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the

analogue voltage range is the same as the power supply to the PICAXE chip.

However, if desired, the Vref signals can be altered to external pins instead by use

of the ‘adcconfig’ command.

Example:

let adcsetup = %00001111 ; set ADC on B.0-B.3

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

34

34

www.picaxe.com

backward

Syntax:

BACKWARD motor
- Motor is the motor name A or B.

Function:

Make a motor output turn backwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-

assembled classroom models. It is actually equivalent to ‘low 4 : high 5’ (motor

A) or ‘low 6: high 7’ (motor B). This command is not normally used outside of

the classroom.

Example:

main: forward A ; motor a on forwards

wait 5 ; wait 5 seconds

backward A ; motor a on backwards

wait 5 ; wait 5 seconds

halt A ; motor A stop

wait 5 ; wait 5 seconds

goto main ; loop back to start

		
		
		

��
���
���

����
���

���
���
����
����

���
����
����

		
		

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

35

35

www.picaxe.com

��
���

����

��
���
���

����
���

���
���
����
����

���
����
����

���
����

bcdtoascii

Syntax:

BCDTOASCII variable, tens, units
BCDTOASCII wordvariable, thousands, hundreds, tens, units

- Variable contains the value (0-99) or wordvariable (0-9999)

- Thousands receives the ASCII value (“0” to “9”)

- Hundreds receives the ASCII value (“0” to “9”)

- Tens receives the ASCII value (“0” to “9”)

- Units receives the ASCII value (“0” to “9”)

Function:

Convert a BCD value into separate ASCII bytes.

Information:

This is a ‘pseudo’ command designed to simplify the conversion of byte or word

BCD values into ASCII. Note that the maximum valid value for a BCD value is 99

(byte) or 9999 (word).

Example:

main: inc b1

bcdtoascii b1,b2,b3 ; convert to ascii

debug ; debug values for testing

goto main ; loop back to start
���

����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

36

36

www.picaxe.com

��
���

����

��
���
���

����
���

���
���
����
����

���
����
����

���
����

bintoascii

Syntax:

BINTOASCII variable, hundreds, tens, units
BINTOASCII wordvariable, tenthousands, thousands, hundreds, tens, units

- Variable contains the value (0-255) or wordvariable (0-65535)

- TenThousands receives the ASCII value (“0” to “9”)

- Thousands receives the ASCII value (“0” to “9”)

- Hundreds receives the ASCII value (“0” to “9”)

- Tens receives the ASCII value (“0” to “9”)

- Units receives the ASCII value (“0” to “9”)

Function:

Convert a binary value into separate ASCII bytes.

Information:

This is a ‘pseudo’ command designed to simplify the conversion of byte or word

binary values into ASCII.

Example:

main: inc b1

bintoascii b1,b2,b3,b4 ; convert b1 to ascii

debug ; debug values for testing

goto main ; loop back to start

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

37

37

www.picaxe.com

booti2c

Syntax:

booti2c slot
- slot is the external EEPROM address and slot number (4 to 7)

Function:

On X2 parts it is possible to update the internal program by copying a new

program from an external i2c EEPROM.

Information:

The booti2c command can be used to copy a program from an external 24LC128

memory slot into an internal memory slot. The booti2c command is only

processed if the program revision number (set by the #revision directive during

download) in the 24LC128 memory slot is greater than the revision number

currently in the internal program slot. This means that the program copying will

only occur once after a new 24LC128 is fitted.

If an EEPROM is not correctly connected, the data returned from the circuit will

typically be 0 or 255, therefore these two values are not valid #revision numbers

and are ignored.

The booti2c command parameter takes the format of a single data byte, which is

the external i2c address and slot number.

Bit7 24LC128 A2

Bit6 24LC128 A1

Bit5 24LC128 A0

Bit4 reserved for future use

Bit3 reserved for future use

Bit2 must be set to 1 for i2c use

Bit1, 0 slot number

The lower 2 bits of the slot number (bits 1,0) is copied into the same position

within the internal program memory. The data memory is left unchanged. The i2c

to internal program copying of slots is therefore mapped as follows (when using

an EEPROM with address 0):

i2c slot internal memory slot

 4 (%00000100) -> 0 (%00000000)

 5 (%00000101) -> 1 (%00000001)

 6 (%00000110) -> 2 (%00000010)

 7 (%00000111) -> 3 (%00000011)

After a program has been copied the chip automatically resets (so the program in

slot 0 starts running).

Therefore if you wish to program an EEPROM with a program that is eventually

targeted for updating internal program slot 2 on a different chip, a ‘#slot 6’

directive should be included upon the computer download into the EEPROM.

The EEPROM can then be transferred across and connected to the target system.

		
		
		

		
		
		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

38

38

www.picaxe.com

The type of EEPROM chip must be a device that has a minimum of a 64 byte

page buffer. Therefore the EEPROM recommended is a Microchip brand 24LC128

(or 24LC256 or 24LC512). Non-Microchip brands may not operate correctly if

they have different timing specifications or page buffer capacity.

Example:

booti2c 1 ; check EEPROM & update slot 1 if required

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

39

39

www.picaxe.com

branch

Syntax:

BRANCH offset,(address0,address1...addressN)
- Offset is a variable/constant which specifies which Address# to use (0-N).

- Addresses are labels which specify where to go.

Function:

Branch to address specified by offset (if in range).

Information:

This command allows a jump to different program positions depending on the

value of the variable ‘offset’. If offset is value 0, the program flow will jump to

address0, if offset is value 1 program flow will jump to address1 etc.

If offset is larger than the number of addresses the whole command is ignored

and the program continues at the next line.

This command is identical in operation to on...goto

Example:

reset1:let b1 = 0

low B.0

low B.1

low B.2

low B.3

main: inc b1

if b1 > 4 then reset1

branch b1,(btn0,btn1, btn2, btn3, btn4)

btn0: high B.0

goto main

btn1: high B.1

goto main

btn2: high B.2

goto main

btn3: high B.3

goto main

btn4: high B.4

goto main

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

40

40

www.picaxe.com

button

Syntax:

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address
- Pin is a variable/constant which specifies the i/o pin to use.

- Downstate is a variable/constant (0 or 1) which specifies which logical state is

read when the button is pressed. If the input is active high, at V+ when the

button is pressed (e.g. a 10k pull down resistor with switch wired to V+) then

enter 1 here. If the input is active low, at 0V when the button is pressed (e.g. a

10k pull up resistor with switch wired to 0V) then enter 0.

- Delay is a variable/constant (1-254, 0 or 255) which is a counter which specifies

the number of loops to complete before the auto repeat feature starts if

BUTTON is used within a loop. If the value is between 1 and 254 this value

will be loaded into the bytevariable when the switch becomes active, and then

decremented on every loop whilst the button is still active. Only when the

counter reaches 0 will the address be processed for the second time. This

gives an initial delay before the auto-repeat starts. A value of 255 disables the

auto-repeat feature. The button will still be debounced, so use the value 255

when you want a simple debounce feature without auto repeat. A value of 0

disables both the debounce and auto-repeat features. Therefore with delay=0

the command will operate as a simple ‘if pin = targetstate then’ command.

- Rate is a variable/constant (0-255) which specifies the auto-repeat rate in

BUTTON cycles. After the initial delay this value will be loaded into the

bytevariable, and then decremented on every loop whilst the button is still

active. Only when the value reaches 0 will the address be processed again.

This gives the delay between every auto-repeat cycle.

- Bytevariable is a variable which is used as the workspace for the auto repeat loop

counters. It must be cleared to 0 before being used by BUTTON for the first

time (before the loop that BUTTON is used within.)

- Targetstate is a variable/constant (0 or 1) which specifies what state (0=not

pressed, 1=pressed) the button should be in for the branch (goto) to address

to occur. This value can be used to ‘invert’ the operation of the address jump,

jumping when either pushed (1) or when not pushed (0).

- Address is a label which specifies where to go if the button is in the target state.

Function:

Debounce button, auto-repeat, and branch if button is in target state.

Information:

When mechanical switches are activated the metal ‘contacts’ do not actually close

in one smooth action, but ‘bounce’ against each other a number of times before

settling. This can cause microcontrollers to register multiple ‘hits’ with a single

physical action, as the microcontroller can register each bounce as a new hit.

One simple way of overcoming this is to simply put a small pause (e.g. pause 10)

within the program, this gives time for the switch to settle.

Alternately the button command can be used to overcome these issues. When the

button command is executed, the microcontroller looks to see if the ‘downstate’

is matched. If this is true the switch is debounced, and then program flow jumps

to ‘address’ if ‘targetstate’ = 1. If targetstate = ‘0’ the program continues.

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

41

41

www.picaxe.com

If the button command is within a loop, the next time the command is executed

‘downstate’ is once again checked. If the condition is still true, the variable

‘bytevariable’ is loaded with the ‘delay’ value. On each subsequent loop where the

condition is still true bytevariable is decremented until it reaches 0. At this point

a second jump to ‘address’ is made if ‘targetstate’ = 1. Bytevariable is then reset to

the ‘rate’ value and the whole process then repeats, as once again on each loop

bytevariable is decremented until it reaches 0, and at 0 another jump to ‘address’

is made if ‘targetstate’ = 1.

This gives action like a computer keyboard key press - send one press, wait for

‘delay’ number of loops, then send multiple presses at time interval ‘rate’.

Note that button should be used within a loop. It does not pause program flow

and so only checks the input switch condition as program flow passes through

the command.

Example:

init: b2 = 0 ; reset targetbyte

; before the loop

; input C.0, active high, jump to ‘pushed’ label when = 1

myloop: button C.0,1,200,100,b2,1,pushed

; jump to cont when C.0 = 1

low B.7 ; output off

pause 10 ; loop delay time

goto myloop

pushed: high B.7 ; output on

sertxd (“PUSH”) ; send push message

goto myloop

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

42

42

www.picaxe.com

		
		
		

����
		

		
		

����

calibadc (calibadc10)

Syntax:

CALIBADC variable
CALIBADC10 wordvariable
- variable receives the adc reading

Function:

Calibrate the microcontrollers internal ADC by measuring a fixed internal fixed

voltage reference.

0.6V 20M, 28X1, 40X1

1.2V 28X2-3V, 28X2-3V

1.024V All other parts that support this command

Note that this command is not available on 28X2-5V/40X2-5V

Information:

The reference voltage used by the PICAXE microcontrollers ADC reading

(readadc/ readadc10) commands is the supply voltage. In the case of a battery

powered system, this supply voltage can change over time (as the battery runs

down), resulting in a varying ADC reading for the same voltage input.

The calibadc/calibadc10 commands can help overcome this issue by providing

the ADC reading of a nominal internal reference. Therefore by periodically using

the calibadc command you can mathematically calibrate/compensate the readadc

command for changes in supply voltage.

calibadc can be considered as ‘carry out a readadc on a fixed reference’

Note that the voltage specified is a nominal voltage only and will vary with each

part. Microchip datasheet AN1072 provides further details on how to software

calibrate and use this advanced feature.

A formula to use the 0.6V value is

Vsupply = step * 6 / calib / 10

where step = 255 (calib) or 1023 (calibadc10) and calib is the value returned

from the calibadc command. Note that *6 / 10 is mathematically equivalent to

multiply by 0.6 (the voltage reference).

Example:

main:

calibadc b1 ; read the adc reading

debug ; display current value

pause 500 ; wait a while

goto main ; loop back to start

		
		

����
����

		
����
����

		
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

43

43

www.picaxe.com

calibfreq

Syntax:

CALIBFREQ {-} factor
- factor is a constant/variable containing the value -15 to 15

Function:

Calibrate the microcontrollers internal resonator. 0 is the default factory setting.

Information:

PICAXE chips have an internal resonator that can be set to different operating

speeds via the setfreq command.

On these chips it is also possible to ‘calibrate’ this frequency. This is an advanced

feature not normally required by most users, as all chips are factory calibrated to

the most accurate setting. Generally the only use for calibfreq is to slightly adjust

the frequency for serial transactions with third party devices. A larger positive

value increases speed, a larger negative value decreases speed. Try the values -4 to

+ 4 first, before going to a higher or lower value.

Use this command with extreme care. It can alter the frequency of the PICAXE

chip beyond the serial download tolerance - in this case you will need to perform

a ‘hard-reset’ in order to carry out a new download.

The calibfreq is actually a pseudo command that performs a ‘poke’ command on

the microcontrollers OSCTUNE register.

When the value is 0 to 15 the equivalent BASIC code is

pokesfr OSCTUNE, factor

pause 2

When the factor is -15 to -1 the equivalent BASIC code is

let b12 = 64 - factor

pokesfr OSCTUNE, b12

pause 2

Note that in this case variable b12 is used, and hence corrupted, by the

command. This is necessary to poke the OSCTUNE register with the correct value.

		
���

����

		
		
		

����
���

		
		

����
����

		
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

44

44

www.picaxe.com

clearbit

Syntax:

CLEARBIT var, bit
- var is the target variable.

- bit is the target bit (0-7 for byte variables, 0-15 for word variables)

Function:

Clear a specific bit in the variable.

Information:

This command clears (clears to 0) a specific bit in the target variable.

Example:

clearbit b6, 0

clearbit w4, 15

		
		
		
		
		

		
		
		

		
		

����
����

		
����
����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

45

45

www.picaxe.com

compsetup

Syntax:

COMPSETUP config , ivr
- config is a constant/variable specifying the comparator configuration

- ivr is a constant/variable specifying the internal voltage reference ‘resistor-

ladder’ configuration

Function:

Configure the internal comparators on X2 parts.

Information:

PICAXE-X2 chips have 2 comparators, each with the capability of comparing two

analogue voltages from two external ADC pins or from an external ADC pin and

an internally generated voltage reference. External ADC must be configured using

the adcsetup variable before using this command.

PICAXE-28X2-5V (PIC18F2520) and 40X2-5V (PIC18F4520)

Config:

bit7 not used, use 0

bit6 = 0 Comparator 1 Vin+ is ADC3 and Comparator 2 Vin+ is ADC2

= 1 Comparator of both Vin+ is from voltage divider

bit5 not used, use 0

bit4 = 0 Change in either comparator does not cause change in compflag

= 1 Change in either comparator sets compflag

bit3 = 0 Comparator 2 output is not inverted

= 1 Comparator 2 output is inverted

bit2 = 0 Comparator 1 output is not inverted

= 1 Comparator 1 output is inverted

bit1 = 0 Comparator 2 is disabled

= 1 Both Comparator 1 & 2 are enabled

bit0 = 0 Comparator 1 is disabled

= 1 Comparator 1 is enabled

		
		
		
		
		

		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

�
��

����

����������

�
��

����

����������

����
�
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

46

46

www.picaxe.com

�
��

����

����������

�
��

����

����������

����
�
����

PICAXE-28X2 (PIC18F25K22) / 40X2 (PIC18F45K22)
PICAXE-28X2-3V (PIC18F25K20) / 40X2-3V (PIC18F45K20)

Config:

bit9 = 0 Comparator 2 Vin+ is set from voltage divider

= 1 Comparator 2 Vin+ is from fixed 1.2V reference

bit8 = 0 Comparator 1 Vin+ is set from voltage divider

= 1 Comparator 1 Vin+ is from fixed 1.2V reference

bit7 = 0 Comparator 2 Vin+ is ADC2

= 1 Comparator 2 Vin+ is from voltage divider/fixed ref

bit6 = 0 Comparator 1 Vin+ is ADC3

= 1 Comparator 1 Vin+ is from voltage divider/fixed ref

bit5 = 0 Change in comparator 2 does not cause change in compflag

= 1 Change in comparator 2 sets compflag

bit4 = 0 Change in comparator 1 does not cause change in compflag

= 1 Change in comparator 1 sets compflag

bit3 = 0 Comparator 2 output is not inverted

= 1 Comparator 2 output is inverted

bit2 = 0 Comparator 1 output is not inverted

= 1 Comparator 1 output is inverted

bit1 = 0 Comparator 2 is disabled

= 1 Comparator 2 is enabled

bit0 = 0 Comparator 1 is disabled

= 1 Comparator 1 is enabled

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

47

47

www.picaxe.com

PICAXE-20X2

Config:

bit9 = 0 Comparator 2 Vin+ is set from voltage divider

= 1 Comparator 2 Vin+ is from fixed 1.024V reference

bit8 = 0 Comparator 1 Vin+ is set from voltage divider

= 1 Comparator 1 Vin+ is from fixed 1.024V reference

bit7 = 0 Comparator 2 Vin+ is ADC2

= 1 Comparator 2 Vin+ is from voltage divider/fixed ref

bit6 not used, use 1

bit5 = 0 Change in comparator 2 does not cause change in compflag

= 1 Change in comparator 2 sets compflag

bit4 = 0 Change in comparator 1 does not cause change in compflag

= 1 Change in comparator 1 sets compflag

bit3 = 0 Comparator 2 output is not inverted

= 1 Comparator 2 output is inverted

bit2 = 0 Comparator 1 output is not inverted

= 1 Comparator 1 output is inverted

bit1 = 0 Comparator 2 is disabled

= 1 Comparator 2 is enabled

bit0 = 0 Comparator 1 is disabled

= 1 Comparator 1 is enabled

�
��

����

���

�
��

����

����������

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

48

48

www.picaxe.com

 Comparator Result
The result of the two comparators can be read at any time by reading the

‘compvalue’ variable - bits 0 and 1 of compvalue contain the comparator output.

Bit 0 is the output of comparator 1. This output can be inverted, equivalent to

reversing the comparator inputs, by setting bit 2 of config.

Bit 1 is the output of comparator 2. This output can be inverted, equivalent to

reversing the comparator inputs, by setting bit 3 of config.

If required a change in value can be used to trigger a change in the ‘compflag’ bit.

When flag change is enabled (via bits 4 and 5 of config) the ‘compflag’ will be set

whenever there is a change in input condition. This can be used to trigger a

‘setintflags’ interrupt if required. A change will also trigger a wake from sleep.

Internal Voltage Reference
Each comparator can be compared to a configurable internal voltage reference,

generated from an internal resistor ladder (select via bits 6 and 7 of config).

On some parts it is also possible to compare to a fixed internal voltage instead of

the resistor ladder (select via bits 6, 7, 8 and 9 of config).

The voltage reference is generated from an internal resistor ladder between the

power rails as shown in the diagrams overleaf. Note that the actual value of the

resistors is not relevant, as they are simply dividers in a potential divider

arrangement. The resistors marked 8R are 8 x the value of the other resistors.

The ivr byte used within the compsetup command is configured as follows:

20X2, 28X2, 40X2

bit7 = 0 Voltage Ladder is disabled

= 1 Voltage Ladder is enabled

bit6 not used, use 0

bit5 not used, use 0

bit4:0 Select 1 of the 32 voltage tap-off positions

28X2-5V, 28X2-3V, 40X2-5V, 40X2-3V

bit7 = 0 Voltage Ladder is disabled

= 1 Voltage Ladder is enabled

bit6 not used, use 0

bit5 = 0 Bottom ‘8R’ resistor is used

= 1 Bottom ‘8R’ resistor is shorted out and hence not used

bit4 not used, use 0

bit3:0 Select 1 of the 16 voltage tap-off positions

Example:

init:

adcsetup = 4 ; use adc 0-3 (28X2-5V)

compsetup %00000011,0 ; use comparators 1 and 2

main:

b1 = compvalue ; read value

debug ; display value

pause 500 ; short delay

goto main ; loop back

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

49

49

www.picaxe.com

��

��

��
�
��

�
�

�����

��� !�" ���

�

�

�

�

�

�!�#�

����

�����

�����

�����

�����

$�

��

��

��
�
��

�
�

$�

����

����

����

����

����

��� !�" ���

�

�

�

�

�

�

�!�#�

�!�

�$���������

When Bit5 = 1 (bottom resistor shorted)

IVR = (position / 24) * Supply

When Bit5 = 0 (bottom resistor active)

IVR = (position/32) * Supply + (Supply/4)

Where position = 0 to 15 (Bit3:Bit0)

IVR = (position / 32) * Supply

Where position = 0 to 31 (Bit4:Bit0)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

50

50

www.picaxe.com

count

Syntax:

COUNT pin, period, wordvariable
- Pin is a variable/constant which specifies the input pin to use.

- Period is a variable/constant (1-65535ms at 4MHz).

- Wordvariable receives the result (0-65535).

Function:

Count pulses on an input pin.

Information:

Count checks the state of the input pin and counts the number of low to high

transitions within the time ‘period’. A word variable should be used for ‘variable’.

At 4MHz the input pin is checked every 20us, so the highest frequency of pulses

that can be counted is 25kHz, presuming a 50% duty cycle (ie equal on-off time).

Take care with mechanical switches, which may cause multiple ‘hits’ for each

switch push as the metal contacts ‘bounce’ upon closure.

Effect of increased clock speed:

For all PICAXE chips the minimum width of a clocking signal (total time of high

and low added together) and that signal’s maximum frequency will be as follows:

Clock Signal Signal

Frequency Width Frequency

4MHz 40us 25kHz

8MHz 20us 50kHz

16MHz 10us 100kHz

32MHz 5us 200kHz

64MHz 2.5us 400kHz

The unit of time for the sampling period is also affected by the operating speed.

Clock Sample Period

Frequency Time Unit

4MHz 1ms (1000 us)

8MHz 500 us

16MHz 250 us

32MHz 125 us

64MHz 62.5 us

Example:

main:

count C.1, 5000, w1 ; count pulses in 5secs (at 4MHz)

debug ; display value

goto main ; loop back to start

		
���

����

		
���
���

����
���

		
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

51

51

www.picaxe.com

daclevel

Syntax:

DACLEVEL level
- Level is a variable/constant which specifies the DAC output level (0-31).

Function:

Set the DAC output level (32 steps, valid value 0-31).

Information:

The daclevel command is used to set the DAC output level to one of 32 levels

which cover the entire voltage range of the DAC. Therefore each level is 1/32nd of

the maximum voltage. A ‘readdac’ command can also read the DAC value, this is

equivalent to a ‘readadc command on the DAC level’.

A dacsetup command must have been used to setup the DAC before this

command will function.

Example:

init: dacsetup %10100000 ; external DAC, supply voltage

main: for b1 = 0 to 31

 daclevel b1 ; set DAClevel

 pause 1000

next b1

goto main ; loop back to start

		
		

����

		
		
		

����
		

		
����

		
����

		

		
		
		

����

		
		

����

���������	
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

52

52

www.picaxe.com

		
		

����

		
		
		

����
		

		
����

		
����

		

dacsetup

Syntax:

DACSETUP config
- config is a constant/variable specifying the DAC configuration

Function:

Configure the DAC (digital to analogue) reference voltage

Information:

Some PICAXE chips have a DAC voltage reference.

This may be used internally, or externally via the

DAC output pin.

Note that the DAC MUST BE BUFFERED for

reliable use. It cannot, for instance, provide

enough current to light an LED. It is purely a

reference voltage for use with, for example, an

op-amp configured as a voltage follower.

After the DAC has been configured, a ‘daclevel’ command is used to set the actual

DAC level, which is divided by 32 equal steps. The maximum theoretical output

value is 31/32 * supply voltage, which equates to 4.84V with a 5V supply.

The best results at 5V supply have been achieved experimentally with a Microchip

MCP6022 op amp with a 100nF capacitor, which gave excellent results (4.78V).

An OP90GPZ gave the second best result with only slight clipping (4.09V). Older

op amps such as the CA3140EZ gave very poor (badly clipped) results (2.73V).

A ‘readdac’ command can also read the DAC value, this is equivalent to a ‘readadc

command on the DAC level’. The supply for the DAC can be configured as

follows:

Config:

bit7 = 0 DAC disabled

= 1 DAC enabled

bit6 = 0 not used, use 0

bit5 = 0 DAC internal only

= 1 DAC also on DAC external output pin (overrides input/output)

bit4 = 0 not used, use 0

bit3-2 = 00 DAC upper is Supply Voltage

= 01 External Vref+ pin (see adcconfig command)

= 10 FVR voltage (see fvrsetup command)

= 11 not used

bit1 = 0 not used, use 0

bit0 = 0 DAC lower is Supply 0V

= 1 External Vref- pin (see adcconfig command)

�

%"
��"

��

���
"�&

		
		
		

����

		
		

����

���������	
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

53

53

www.picaxe.com

Example:

init: low DAC_PIN ; make the DAC pin an output

dacsetup %10100000 ; external DAC, supply voltage

main: for b1 = 0 to 31

 daclevel b1 ; set DAClevel

 pause 1000

next b1

goto main ; loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

54

54

www.picaxe.com

debug

Syntax:

DEBUG {var}
- Var is an optional variable value (e.g. b3). Its value is not of importance and is

included purely for backwards compatibility with older programs.

Function:

Display variable information in the debug window when the debug command is

processed. Byte information is shown in decimal, binary, hex and ASCII notation.

Word information is shown in decimal and hex notation.

Information:

The debug command uploads the current variable values for *all* the variables

via the download cable to the computer screen. This enables the computer screen

to display all the variable values in the microcontroller for debugging purposes.

Note that the debug command uploads a large amount of data and so

significantly slows down any program loop.

To display user defined debugging messages use the ‘sertxd’ command instead.

Note that on 08 and 14 pin chips debug acts on ‘B.0 / output 0’. Therefore

programs that use output 0 may corrupt the serial data condition. In this case it is

recommended to use the following structure before a debug command.

low B.0 ; reset B.0 to correct condition

pause 500 ; wait a while

debug ; display values on computer screen

Example:

main:

inc b1 ; increment value of b1

readadc A.2,b2 ; read an analogue value

debug ; display values on computer screen

pause 500 ; wait 0.5 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

55

55

www.picaxe.com

dec

Syntax:

DEC var
- var is the variable to decrement

Function:

Decrement (subtract 1 from) the variable value.

Information:

This command is shorthand for ‘let var = var - 1’

Example:

let b2 = 10

for b1 = 1 to 5

 dec b2

next b1

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

56

56

www.picaxe.com

		
		
		

����
		

		
���

����

		
		

����
����

		
����
����

disablebod

Syntax:

DISABLEBOD

Function:

Disable the on-chip brown out detect function.

Information:

Some PICAXE chips have a programmable internal brown out detect function, to

automatically cleanly reset the chip on a power brown out (a sudden voltage drop

on the power rail). The brown out detect is always enabled by default when a

program runs. However it is sometimes beneficial to disable this function to

reduce current drain in battery powered applications whilst the chip is ‘sleeping’.

The brownout voltage is fixed for each device as follows:

1.8V 28X2-3V, 40X2-3V

1.9V 20X2, 14M2, 18M2, 20M2, 28X2, 40X2

2.1V 08, 08M, 14M, 20M, 28X1, 40X1

2.3V 08M2

3.2V 28X2-5V, 40X2-5V

None 18, 18A, 18M, 18X, 28A, 28X, 40X

Use of the disablebod command prior to a sleep will considerably reduce the

current drawn during the actual sleep command.

Example:

main: disablebod ; disable brown out

sleep 10 ; sleep for 23 seconds (2.3x10)

enablebod ; enable brown out

goto main ; loop back to start

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

57

57

www.picaxe.com

disabletime

Syntax:

DISABLETIME

Function:

Disable the elapsed time counter.

Information:

The M2 series have an internal elapsed time counter. This is a word variable called

‘time’ which increments once per second. This seconds counter starts

automatically on a power-on reset, but can also be enabled/disabled by the

disabletime/enabletime commands.

Effect of increased clock speed:

The time function will work correctly at 4MHz or 16 MHz.

At 2MHz or 8MHz the interval will be 2s

At 16MHz the interval will be 0.5s

Example:

main: pause 5000

disabletime ; disable time

pause 5000 ; wait 5 seconds

enabletime ; enable time

debug ; display time value

goto main ; loop back to start

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

58

58

www.picaxe.com

disconnect

Syntax:

DISCONNECT

Function:

Disconnect the PICAXE so that it does not scan for new downloads.

Information:

The PICAXE chips constantly scan the serial download pin to see if a computer is

trying to initialise a new program download. However when it is desired to use

the download pin for user serial communication (serrxd command), it is

necessary to disable this scanning. Note that the serrxd command automatically

includes a disconnect command.

After disconnect is used it will not be possible to download a new program until:

1) the reconnect command is issued

2) a reset command is issued

3) a hardware reset is carried out

Remember that is always possible to carry out a new download by carrying out

the ‘hard-reset’ procedure.

Example:

serrxd [1000, timeout],@ptrinc,@ptrinc,@ptr

reconnect

		
		

����
����

		
����
����

		
		

����

		
		

���
����

		

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

59

59

www.picaxe.com

do...loop

Syntax:

DO
{code}
LOOP UNTIL/WHILE VAR ?? COND

DO
{code}
LOOP UNTIL/WHILE VAR ?? COND AND/OR VAR ?? COND...

DO UNTIL/WHILE VAR ?? COND
{code}
LOOP

DO UNTIL/WHILE VAR ?? COND AND/OR VAR ?? COND...
{code}
LOOP

- var is the variable to test

- cond is the condition

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

< less than

Function:

Loop whilst a condition is true (while) or false (until)

Information:

This structure creates a loop that allows code to be repeated whilst, or until, a

certain condition is met. The condition may be in the ‘do’ line (condition is

tested before code is executed) or in the ‘loop’ line (condition is tested after the

code is executed).

The exit command can be used to prematurely exit out of the do...loop.

Example:

do

 high B.1

 pause 1000

 low B.1

 pause 1000

 inc b2

 if pinC.1 = 1 then exit

loop while b2 < 5

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

60

60

www.picaxe.com

doze

Syntax:

DOZE period
- Period is a variable/constant which determines the duration of the reduced-

power sleep (peripherals active).

Function:

Doze for a short period. Power consumption is reduced, but some timing

accuracy is lost. Doze uses the same timeout frequency as sleep (2.1s).

Information:

The doze command puts the microcontroller into low power mode for a short

period of time (like the sleep command). However, unlike the sleep command,

all timers are left on and so the pwmout, timer and servo commands will

continue to function. The nominal period of time is 2.1 seconds Due to

tolerances in the microcontrollers internal timers, this time is subject to -50 to

+100% tolerance. The external temperature affects these tolerances and so no

design that requires an accurate time base should use this command.

‘doze 0’ puts the microcontroller into permanent doze- it does not wake every 2.1

seconds. The microcontroller is only woken by a hardware interrupt (e.g. hint pin

change or timer tick) or hard-reset. The chip will not respond to new program

downloads when in permanent doze.

Effect of increased clock speed:

The doze command uses the internal timer which is not affected by changes in

resonator clock speed.

Example:

main: high B.1 ; switch on output B.1

doze 1 ; doze for 2.1 s

low B.1 ; switch off output B.1

doze 1 ; doze for 2.1 s

goto main ; loop back to start

		
		
		

		
		
		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

61

61

www.picaxe.com

eeprom (data)

Syntax:

DATA {location},(data,data...)
EEPROM {location},(data,data...)
- Location is an optional constant (0-255) which specifies where to begin

storing the data in the EEPROM. If no location is specified, storage continues

from where it last left off. If no location was initially specified, storage begins

at 0.

- Data are constants (value 0-255) which will be stored in the EEPROM.

Function:

Preload EEPROM data memory. If no EEPROM command is used the values are

automatically cleared to the value 0. The keywords DATA and EEPROM have

identical functions and either can be used.

Information:

This is not an instruction, but a method of pre-loading the microcontrollers data

memory. The command does not affect program length.

All current PICAXE chips have 256 bytes (address 0-255) of EEPROM memory.

Only these older (discontinued) parts had less:

PICAXE-28, 28A 0 to 63

PICAXE-08, 18, 28X, 40X 0 to 127

Shared Memory Space:

With some PICAXE parts (listed below) the data memory is shared with program

memory. Therefore only unused bytes may be used by the EEPROM command.

To establish the length of the program use ‘Check Syntax’ from the PICAXE

menu. This will report the length of program. Available data addresses can then

be used as follows:

PICAXE-08 / 18 0 to (127 - number of used bytes)

PICAXE-08M 0 to (255 - number of used bytes)

PICAXE-14M / 20M 0 to (255 - number of used bytes)

PICAXE-18M 0 to (255 - number of used bytes)

PICAXE- 08M2 / 18M2 Program 1792 up to 2048 is EEPROM 255 to 0

(not 18M2+) So on 08M2/older 18M2 all bytes are available if

program is shorter than 1792 bytes long.

Example:

EEPROM 0,(“Hello World”) ; save values in EEPROM

main:

 for b0 = 0 to 10 ; start a loop

 read b0,b1 ; read value from EEPROM

 serout B.7,N2400,(b1) ; transmit to serial LCD module

 next b0 ; next character

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

62

62

www.picaxe.com

enablebod

Syntax:

ENABLEBOD

Function:

Enable the on-chip brown out detect function.

Information:

Some PICAXE chips have a programmable internal brown out detect function, to

automatically cleanly reset the chip on a power brown out (temporary voltage

drop). The brown out detect is always enabled by default when a program runs.

However it is sometimes beneficial to disable this function to reduce current

drain in battery powered applications whilst the chip is ‘sleeping’.

The brownout voltage is fixed for each device as follows:

1.8V 28X2-3V, 40X2-3V

1.9V 20X2, 14M2, 18M2, 20M2, 28X2, 40X2

2.1V 08, 08M, 14M, 20M, 28X1, 40X1

2.3V 08M2

3.2V 28X2-5V, 40X2-5V

None 18, 18A, 18M, 18X, 28A, 28X, 40X

Use of the disablebod command prior to a sleep will considerably reduce the

current drawn during the actual sleep command.

Example:

main: disablebod ; disable brown out

sleep 10 ; sleep for 23 seconds (10x2.3)

enablebod ; enable brown out

goto main ; loop back to start

		
		
		

����
		

		
���

����

		
		

����
����

		
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

63

63

www.picaxe.com

enabletime

Syntax:

ENABLETIME

Function:

Enable the elapsed time counter.

Information:

The M2 series have an internal elapsed time counter. This is a word variable called

‘time’ which increments once per second. This seconds counter starts

automatically on a power-on reset, but can also be enabled/disabled by the

disabletime/enabletime commands.

Effect of increased clock speed:

The time function will work correctly at 4MHz or 16 MHz.

At 2MHz or 8MHz the interval will be 2s

At 16MHz the interval will be 0.5s

Example:

main: pause 5000

disabletime ; disable time

pause 5000 ; wait 5 seconds

enabletime ; enable time

debug ; display time value

goto main ; loop back to start

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

64

64

www.picaxe.com

end

Syntax:

END

Function:

Sleep terminally until the power cycles (program re-runs) or the PC connects for a

new download. Power is reduced to an absolute minimum (assuming no loads

are being driven) and internal timers are switched off.

Information:

The end command places the microcontroller into low power mode after a

program has finished. Note that as the compiler always places an END instruction

after the last line of a program, this command is rarely required.

The end command switches off internal timers, and so commands such as servo

and pwmout that require these timers will not function after an end command

has been completed.

If you do not wish the end command to be carried out, place a ‘stop’ command at

the bottom of the program. The stop command does not enter low power mode.

The main use of the end command is to separate the main program loop from

sub-procedures as in the example below. This ensures that programs do not

accidentally ‘fall into’ the sub-procedure.

Example:

main:

let b2 = 15 ; set b2 value

pause 2000 ; wait for 2 seconds

gosub flsh ; call sub-procedure

let b2 = 5 ; set b2 value

pause 2000 ; wait for 2 seconds

end ; stop accidentally falling into sub

flsh:

for b0 = 1 to b2 ; define loop for b2 times

 high B.1 ; switch on output B.1

 pause 500 ; wait 0.5 seconds

 low B.1 ; switch off output B.1

 pause 500 ; wait 0.5 seconds

next b0 ; end of loop

return ; return from sub-procedure

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

65

65

www.picaxe.com

exit

Syntax:

EXIT

Function:

Exit is used to immediately terminate a do...loop or for...next program loop.

Information:

The exit command immediately terminates a do...loop or for...next program loop.

It is equivalent to ‘goto line after end of loop’.

Example:

main:

do ; start loop

if b1 = 1 then

 exit

end if

loop ; loop

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

66

66

www.picaxe.com

for...next

Syntax:

FOR variable = start TO end {STEP {-}increment}
 (other program lines)
NEXT {variable}
- Variable will be used as the loop counter

- Start is the initial value of variable

- End is the finish value of variable

- Increment is an optional value which overrides the default counter value of

+1. If Increment is preceded by a ‘-’, it will be assumed that Start is greater

than End, and therefore increment will be subtracted (rather than added) on

each loop.

Function:

Repeat a section of code within a FOR-NEXT loop.

Information:

For...next loops are used to repeat a section of code a number of times. When a

byte variable is used, the loop can be repeated up to 255 times. Every time the

‘next’ line is reached the value of variable is incremented (or decremented) by the

step value (+1 by default). When the end value is exceeded the looping stops and

program flow continues from the line after the next command.

For...next loops can be nested 8 deep (remember to use a different variable for

each loop).

The for...next loop can be prematurely ended by use of the exit command.

Example:

main:

for b0 = 1 to 20 ; define loop for 20 times

 if pinC.1 = 1 then exit

 high B.1 ; switch on output B.1

 pause 500 ; wait 0.5 seconds

 low B.1 ; switch off output B.1

 pause 500 ; wait 0.5 seconds

next b0 ; end of loop

pause 2000 ; wait for 2 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

67

67

www.picaxe.com

forward

Syntax:

FORWARD motor
- Motor is the motor name A or B.

Function:

Make a motor output turn forwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-

assembled classroom models. It is actually equivalent to ‘high 4 : low 5’ (motor

A) or ‘high 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:

main:

forward A ; motor a on forwards

wait 5 ; wait 5 seconds

backward A ; motor a on backwards

wait 5 ; wait 5 seconds

halt A ; motor A reverse

wait 5 ; wait 5 seconds

goto main ; loop back to start

���
���
����
����

���
����
����

��
���
���

����
���

		
		
		

		
		

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

68

68

www.picaxe.com

fvrsetup

Syntax:

FVRSETUP OFF
FVRSETUP config
- config is a constant/variable specifying the fixed voltage reference FVR

configuration

Function:

Configure the internal FVR fixed voltage reference

Information:

Some PICAXE chips have a fixed voltage reference.

This may be set off, or to one of three voltages by use of the constants

FVR1024 1.024V

FVR2048 2.048V

FVR4096 4.096V *

* Note the output of the FVR cannot exceed the supply voltage, so 4.096 is only

available at a 5V supply.

Note that the 1.024V reference may not be used as the Vref+ of the ADC (only

2.048 or 4.096 may be used for this purpose). See the adcconfig command for

more details. To reduce power use the FVR module is also automatically disabled

after a readadc command, so reissue the fvrsetup command again after the

readadc if that feature is still required.

Note that the FVR voltage is reset to 1.024V via a ‘calibadc’ command.

The FVR may also be used as reference to the DAC (see the DACsetup command).

Example:

fvrsetup FVR1024 ; set to 1.024V

		
		

����

		
		
		

����
		

		
����

		
����

		

		
		
		

����

		
		

����

���������	
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

69

69

www.picaxe.com

		
		
		
		
		

		
		
		

		
		

����
����

		
����
����

get

Syntax:

GET location,variable,variable,WORD wordvariable...
- Location is a variable/constant specifying a scratchpad address. Valid values

are

0 to 127 for X1 parts

0 to 127 for 20X2 parts

0 to 1023 for all other X2 parts

- Variable is a byte variable where the data is returned. To use a word variable

the keyword WORD must be used before the wordvariable name)

Function:

Read data from the microcontroller scratchpad.

Information:

The function of the put/get commands is to store temporary byte data in the

microcontrollers scratchpad memory. This allows the general purpose variables

(b0, b1 etc) to be re-used in calculations.

Put and get have no effect on the scratchpad pointer and so the address next used

by the indirect pointer (ptr) will not change during these commands.

When word variables are used (with the keyword WORD) the two bytes of the

word are saved/retrieved in a little endian manner (ie low byte at address, high

byte at address + 1)

Example:

get 1,b1 ; put value of register 1 into variable b1

get 1, word w1

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

70

70

www.picaxe.com

gosub (call)

Syntax:

GOSUB address
- Address is a label which specifies where to gosub to.

Function:

Go to sub procedure at ‘address’, then ‘return’ at a later point.

The compiler also accepts ‘call’ as a pseudo for ‘gosub’.

Information:

The gosub (‘goto subprocedure’) command is a ‘temporary’ jump to a separate

section of code, from which you will later return (via the return command). Every

gosub command MUST be matched by a corresponding return command. Do not

confuse with the ‘goto’ command which is a permanent jump to a new program

location.

The table shows the maximum number of gosubs available in each

microcontroller. Gosubs can normally be nested up to 8 levels deep (ie there is a

8 level stack available in the microcontroller).

gosubs interrupt stack depth

All ‘M2’ parts * 255 1 8

All ‘X2’ parts 255 1 8

All ‘X1’ parts 255 1 8

All ‘X’ parts (obsolete) 255 1 4

All ‘M’ parts 15 1 4

All ‘A’ parts (obsolete) 16 0 4

* On ‘parallel tasking’ M2 parts each task has its own separate 8 deep stack.

Sub procedures are commonly used to reduce program space usage by putting

repeated sections of code in a single sub-procedure. By passing values to the sub-

procedure within variables, you can repeat a section of code from multiple places

within the program. See the sample below for more information.

Example:

main:

let b2 = 15 ; set b2 value

gosub flsh ; call sub-procedure

let b2 = 5 ; set b2 value

gosub flsh ; call sub-procedure

end ; stop accidentally falling into sub

flsh:

for b0 = 1 to b2 ; define loop for b2 times

 high B.1 ; switch on output 1

 pause 500 ; wait 0.5 seconds

 low B.1 ; switch off output 1

 pause 500 ; wait 0.5 seconds

next b0 ; end of loop

return ; return from sub-procedure

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

71

71

www.picaxe.com

goto

Syntax:

GOTO address
- Address is a label which specifies where to go.

Function:

Go to address.

Information:

The goto command is a permanent ‘jump’ to a new section of the program. The

jump is made to a label.

Example:

main:

high B.1 ; switch on output 1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output 1

pause 5000 ; wait 5 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

72

72

www.picaxe.com

		
		

����
����

		
����
����

		
		

����

		
		
		

����
���

hi2cin

Syntax:

HI2CIN (variable,...)
HI2CIN location,(variable,...)
HI2CIN [newslave],(variable,...) (X2 parts only)
HI2CIN [newslave],location,(variable,...) (X2 parts only)
- Location is a optional variable/constant specifying a byte or word address.

- Variable(s) receives the data byte(s) read.

- Newslave is an optional new slave address for this (and all future) commands.

Function:

Read i2c location contents into variable(s).

Information:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to read byte data from an i2c device. Location defines the

start address of the data read, although it is also possible to read more than one

byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the hi2csetup command. An

hi2csetup command must have been issued before this command is used. The

hi2csetup commands sets the default slave address for this command. However

when addressing multiple parts it may be necessary to repeatedly change the

default slave address. This can be achieved via the optional [newslave] variable.

If the i2c hardware is incorrectly configured, or the wrong i2cslave data has been

used, the value 255 ($FF) will be loaded into each variable.

Example:

; Example of how to use DS1307 Time Clock

; Note the data is sent/received in BCD format.

; set PICAXE as master and DS1307 slave address

hi2csetup i2cmaster, %11010000, i2cslow, i2cbyte

; read time and date and debug display

main:

hi2cin 0,(b0,b1,b2,b3,b4,b5,b6,b7)

debug b1

pause 2000

goto main

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

73

73

www.picaxe.com

 Hi2cIn $AA,(b0)

 Hi2cIn (b0) : Pause 20 : Hi2cIn $A9,(b0)

 Hi2cIn $55AA,(b0)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

74

74

www.picaxe.com

		
		

����
����

		
����
����

		
		

����

		
		
		

����
���

hi2cout

Syntax:

HI2COUT location,(variable,...)
HI2COUT (variable,...)
HI2COUT [newslave],location,(variable,...) (X2 parts only)
HI2COUT [newslave],(variable,...) (X2 parts only)

- Location is a variable/constant specifying a byte or word address.

- Variable(s) contains the data byte(s) to be written.

- Newslave is an optional new slave address for this (and all future) commands.

Function:

Write to i2c bus when acting as an i2c master device.

Information:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to write byte data to an i2c slave. Location defines the

start address of the data to be written, although it is also possible to write more

than one byte sequentially (if the i2c device supports sequential writes).

Location must be a byte or word as defined within the hi2csetup command. A

hi2csetup command must have been issued before this command is used. The

hi2csetup commands sets the default slave address for this command. However

when addressing multiple parts it may be necessary to repeatedly change the

default slave address. This can be achieved via the optional [newslave] variable.

Example:

; Example of how to use DS1307 Time Clock

; Note the data is sent/received in BCD format.

; Note that seconds, mins etc are variables that need

; defining e.g. symbol seconds = b0 etc.

; set PICAXE as master and DS1307 slave address

hi2csetup i2cmaster, %11010000, i2cslow, i2cbyte

; write time and date e.g. to 11:59:00 on Thurs 25/12/03

start_clock:

let seconds = $00 ; 00 Note all BCD format

let mins = $59 ; 59 Note all BCD format

let hour = $11 ; 11 Note all BCD format

let day = $03 ; 03 Note all BCD format

let date = $25 ; 25 Note all BCD format

let month = $12 ; 12 Note all BCD format

let year = $03 ; 03 Note all BCD format

let control = %00010000 ; Enable output at 1Hz

hi2cout 0,(seconds,mins,hour,day,date,month,year,control)

 end

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

75

75

www.picaxe.com

 Hi2cOut $AA,($A3)

 Hi2cOut ($F3)

 Hi2cOut $55AA,($A3)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

76

76

www.picaxe.com

		
		

����
����

		
����
����

		
		

����

		
		
		

����
���

hi2csetup

Syntax:

HI2CSETUP OFF
HI2CSETUP I2CSLAVE, slaveaddress
HI2CSETUP I2CMASTER, slaveaddress, mode, addresslen

Master mode is when the PICAXE controls the i2c bus. It controls other ‘slave’

devices like memory EEPROMS and can ‘talk’ to any device on the i2c bus.

Slave mode is when the PICAXE is controlled by a different master device (e.g.

another microcontroller). It cannot talk to other devices on the i2c bus.

- SlaveAddress is the i2c slave address

- Mode is the keyword i2cfast (400kHz) or i2cslow (100kHz). Note that these

keywords must change to i2cfast_8, i2cslow_8 at 8MHz, etc.

- Addresslen is the keyword i2cbyte or i2cword. Note that this is the ‘addressing

method’ used by the i2c device (i.e. some EEPROMs use a byte address, some

use a word address). It is NOT the length of data returned by the hi2cin

command, which is always a byte.

Function:

The hi2csetup command is used to configure the PICAXE pins for i2c use and to

define the type of i2c device to be addressed.

Description:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

hi2csetup - slave mode (X2 parts only)

Slave Address

The slave address is the address that is used by the PICAXE chip for identification.

It can be a number between 1 and 127, but must be held in bits 7 to 1 of the

address (not bits 6 - 0) e.g. %1010000x. Bit0 is the read/write bit and so ignored.

If you are not sure which address to use we recommend the ‘standard i2c

EEPROM’ address which is %10100000. Some special i2c addresses (0, %1111xxx,

%0000xxxx) have special meanings under the i2c protocol and so are not

recommended as they may cause unexpected behaviour on third party devices.

Description:

When in slave mode all i2c functions of the slave PICAXE chip are completely

automatic. An i2c master can read or write to the slave PICAXE chip as if it was a

128 (X1, 20X2) or 256 (X2) byte 24LCxx series EEPROM, with the scratchpad

area acting as the memory transfer area. The master can read the slave PICAXE

chip at any time. This does not have any noticeable effect on the slave PICAXE

program, however commands that disable internal hardware interrupts (e.g.

serout etc) may affect operation. See appendix 2 for more detail on possible

conflicts.

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

77

77

www.picaxe.com

However when the master writes to the slave PICAXE memory the ‘hi2cflag’ is set

and the last address written to is saved in the ‘hi2clast’ variable. Therefore by

polling the hi2cflag bit (or using setintflags to cause an interrupt) the PICAXE

program can take action when a write has occurred. The hi2cflag must be cleared

by the user program after use.

Example:

The following examples show how to use two PICAXE-28X1 chips, one as a

master and one as a slave. The slave acts as an output expander for the master.

Slave code:

init: hi2csetup i2cslave, %10100000

main:

if hi2cflag = 0 then main ; poll flag, else loop

hi2cflag = 0 ; reset flag

get hi2clast,b1 ; get last byte written

let outpins = b1 ; set output pins

goto main

Master code:

init: hi2csetup i2cmaster, %10100000, i2cslow, i2cbyte

main:

inc b1 ; increment variable

hi2cout 0,(b1) ; send value to byte 0 on slave

pause 500 ; wait a while

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

78

78

www.picaxe.com

hi2csetup - master mode

If you are using a single slave i2c device alongside your PICAXE master you

generally only need one hi2csetup command within a program. After the

hi2csetup has been issued, hi2cin and hi2cout can be used to access the slave i2c

device. When using multiple devices you can change the default slave address

within the hi2cin or hi2cout command.

Slave Address

The slave address varies for different i2c devices (see table below). For the

popular 24LCxx series serial EEPROMs the address is commonly %1010xxxx.

Note that some devices, e.g. 24LC16B, incorporate the block address (ie the

memory page) into bits 1-3 of the slave address. Other devices include the

external device select pins into these bits. In this case care must be made to

ensure the hardware is configured correctly for the slave address used.

Bit 0 of the slave address is always the read/write bit. However the value entered

using the i2cslave command is ignored by the PICAXE, as it is overwritten as

appropriate when the slave address is used within the readi2c and writei2c

commands.

Most datasheets give the slave address in 8 bit format e.g.

1010000x - where x is don’t care (the read/write bit, PICAXE controlled)

However some datasheets use a 7 bit format. In this case the bits must be shifted

left to take account for the read/write bit.

Speed

Speed of the i2c bus can be selected by using one of the keywords i2cfast or

i2cslow (400kHz or 100kHz). The internal slew rate control of the

microcontroller is automatically enabled when required. Always use the

SLOWEST speed of the devices on a bus - do not use i2cfast if any part is a

100KHz part (e.g. DS1307).

Effect of Increased Clock Speed:

Ensure you modify the speed keyword (i2cfast_8, i2cslow_8) at 8MHz or

(i2cfast_16, i2cslow_16) at 16MHz for correct operation.

Address Length

i2c devices commonly have a single byte (i2cbyte) or double byte (i2cword)

address. This must be correctly defined for the type of i2c device being used. If

you use the wrong definition erratic behaviour will be experienced.

When using the i2cword address length you must also ensure the ‘address’ used

in the hi2cin and hi2cout commands is a word variable.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

79

79

www.picaxe.com

Settings for some common parts:

Device Type Slave Speed Address
24LC01B EE 128 %1010xxxx i2cfast i2cbyte

24LC02B EE 256 %1010xxxx i2cfast i2cbyte

24LC04B EE 512 %1010xxbx i2cfast i2cbyte

24LC08B EE 1kb %1010xbbx i2cfast i2cbyte

24LC16B EE 2kb %1010bbbx i2cfast i2cbyte

24LC64 EE 8kb %1010dddx i2cfast i2cword

24LC128 EE 16kb %1010dddx i2cfast i2cword

24LC256 EE 32kb %1010dddx i2cfast i2cword

24LC512 EE 64kb %1010dddx i2cfast i2cword

DS1307 RTC %1101000x i2cslow i2cbyte

MAX6953 5x7 LED %101ddddx i2cfast i2cbyte

AD5245 Digital Pot %010110dx i2cfast i2cbyte

SRF08 Sonar %1110000x i2cfast i2cbyte

AXE033 I2C LCD $C6 i2cslow i2cbyte

CMPS03 Compass %1100000x i2cfast i2cbyte

SPE030 Speech %1100010x i2cfast i2cbyte

x = don’t care (ignored)

b = block select (selects internal memory page within device)

d = device select (selects device via external address pin polarity)

Effect of Increased Clock Speed:

Ensure you modify the mode keyword (i2cfast_8, i2cslow_8) at 8MHz or

(i2cfast_16, i2cslow_16) at 16MHz for correct operation.

Advanced Technical Information:

Users familiar with assembler code programming may choose to create their own

‘mode’ settings to adjust the i2c communication speed. The mode value is a value

between 0-127 that is the preload BRG value loaded into SSPADD. Bit 7 of the

mode byte is used to set/clear the SSPSTAT,SMP slew control bit.

��

��

��
�
��

'
�
��

'

�()

��

��

�*%+(��,�-

��!����,��

.
#���&/�"�%0�+!�1%��2
����"��3�!!�2���!4�"5**
2%�&��� � !%� �%&�!4���&"5!
"�& ��64� ���5 !�1�
���%7�2�!%�5 ��!4�����
2�7�+��*�(��!4� �

�()

��

��

,�-

,��

8
��

�
�
'.%!��!4������2�7�+�

��/�4�7��+4�"��&�1*�9
���!��"�%!�+!��&2�%�
�22�� �"�& �!4�!���**
�* %���:5����+%&&�+!�%&
!%����%������
�""�%"���!��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

80

80

www.picaxe.com

halt

Syntax:

HALT motor
- Motor is the motor name A or B.

Function:

Make a motor output stop.

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-

assembled classroom models. It is actually equivalent to ‘low 4 : low 5’ (motor A)

or ‘low 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:

main: forward A ; motor a on forwards

wait 5 ; wait 5 seconds

backward A ; motor a on backwards

wait 5 ; wait 5 seconds

halt A ; motor A halt

wait 5 ; wait 5 seconds

goto main ; loop back to start

���
���
����
����

���
����
����

��
���
���

����
���

		
		
		

		
		

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

81

81

www.picaxe.com

hibernate

Syntax:

HIBERNATE config
- config is a constant/variable that sets the type of hibernation

Function:

Make the microcontroller sleep until a reset or interrupt occurs.

Information:

The hibernate command puts the microcontroller into very low power

‘hibernation’ mode. Unlike the sleep command, which wakes up every 2.3s,

hibernate mode enters a state of permanent sleep. The only way to exit this deep

sleep is via an external reset or via a hardware interrupt (hserin, hi2cin, etc.). A

new program download from the computer will NOT wake the microcontroller.

For best low power performance, ensure any unused inputs are tied high/low, and

that no outputs are being actively driven. The hibernate command automatically

shuts down any on-board peripherals (timers, pwm etc) and disables the brown

out detect circuit (equivalent of an automatic ‘disable bod’ command). After a

hibernate command the brown out detect is always re-enabled, so if the brown

out detect feature is not required after the hibernate the user program must

disable it again via a ‘disablebod’ command.

‘config’ value is used to disable/enable and set the ‘ultra low power wake up

feature’ of analogue pin ADC0. A value of 0 disables this feature.. When enabled,

the hibernate will terminate after a capacitor (connected to ADC0) has

discharged. This is more energy efficient than using the sleep command.

A non-zero config value enables the ULPWU feature on ADC0, and the actual

config value sets the charging time (in ms) for the connected capacitor. Therefore

the hibernate command first charges the capacitor, then hibernates, and then

wakes up again once the capacitor has discharged.

The discharge time is given by the following formula:

Time = ((initial C voltage - 0.6) * C) / (sink current + leakage current)

The sink current is approximately 140nA with 5V power supply. Therefore the

discharge time for a 200 ohm resistor and 1nF capacitor is approximately 30ms.

This means the hibernate will end after approximately 30ms, although the

discharge time is highly dependant on the capacitance (of the capacitor and

circuit), and so, for example, long pcb tracks and moisture in the air can

considerably affect these times.

		
		
		
		
		

		
		
		

		
		

����
		

		
����

		

		
		

����

��

�

�

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

82

82

www.picaxe.com

����

���(

��

��

�(

MANUAL WAKEUP - The capacitor can also be completely replaced by a push-to-

make switch (use 1k resistor as R and add another 100k resistor from the top of

the switch to V+ to act as a positive voltage pull-up). The switch then acts as a

manual ‘wake-up’ switch.

Note that the 1k is essential to prevent a possible short circuit situation (if the

switch was pushed whilst the hibernate starts, as it will momentarily make ADC0

an output to ‘charge the capacitor’).

Example:

main:

toggle 1 ; toggle state of output 1

hibernate 50 ; hibernate after charging cap for 50ms

disablebod ; turn bod off

goto main ; loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

83

83

www.picaxe.com

high

Syntax:

HIGH pin {,pin,pin...}
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin an output and switch it high.

Information:

The high command switches an output on (high).

On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this

command also automatically configures the pin as an output.

Example:

main: high B.1 ; switch on output B.1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output B.1

pause 5000 ; wait 5 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

84

84

www.picaxe.com

high portc

Syntax:

HIGH PORTC pin {,pin,pin...}
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin on portc output high.

This command is only used on older 14M and 28X/28X1 parts.

For newer M2 and X2 parts use the PORT.PIN notation directly e.g. high C.2

Information:

The high command switches a portc output on (high).

Example:

main: high portc 1 ; switch on output portC 1

pause 5000 ; wait 5 seconds

low portc 1 ; switch off output portC 1

pause 5000 ; wait 5 seconds

goto main ; loop back to start

		
		
		

		
		
		
		
		

		
���
����

		

���
����

		

���
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

85

85

www.picaxe.com

hintsetup

Syntax:

HINTSETUP mask
- mask is a variable/constant which defines which interrupt pins to activate.

Bit 7 - reserved

Bit 6 - Interrupt 2 Trigger (1 = rising edge, 0 = falling edge)

Bit 5 - Interrupt 1 Trigger (1 = rising edge, 0 = falling edge)

Bit 4 - Interrupt 0 Trigger (1 = rising edge, 0 = falling edge)

Bit 3 - reserved

Bit 2 - Interrupt 2 Enable

Bit 1 - Interrupt 1 Enable

Bit 0 - Interrupt 0 Enable (not available on 20X2)

Function:

The X2 parts have up to 3 hardware interrupts pin (INT0, INT1, INT2) which are

activated/deactivated by the hintsetup command. The hardware interrupt pins

constantly background monitor for an edge based trigger. As they operate in the

background the PICAXE program does not have to poll the input to detect a

change in state.

The hardware interrupts are triggered and processed extremely quickly. Therefore

be aware of, for instance, switch contact bounce, which may give unexpected

results if not debounced by software and/or hardware.

The hardware interrupt pins can also wake a PICAXE microcontroller from sleep/

doze mode.

Information:

The hardware interrupt pins cause an instant change in the hardware interrupt

flags upon input pin condition change.. If a setintflags command has also been

issued, a PICAXE program interrupt may then occur.

Activation of each individual pin sets two flags, its own unique flag and the

shared ‘hintflag’. The flags must be cleared manually in the user’s PICAXE

program. The hintsetup command enables the hardware setting of the flags only,

it does not trigger an actual PICAXE program interrupt.

Therefore to have the PICAXE program call the ”interrupt:” section of code upon

a hardware pin interrupt you must follow two steps:

1) use ‘hintsetup’ to allow hardware flag setting

2) then use ‘setintflags’ to actually generate an interrupt upon the setting of those

flags. This means it is possible to interrupt on a combination of any, or all, of the

flags via use of the setintflags command. See the setintflags command description

for more details.

Example:

hintsetup %00000111 ; enable all 3 pins

hintsetup %00000010 ; enable INT1 only

hintsetup %00000000 ; disable all pins

		
		
		

		
		
		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

86

86

www.picaxe.com

hpwm

Syntax:

HPWM mode, polarity, setting, period, duty
HPWM DIV4, mode, polarity, setting, period, duty
HPWM DIV16, mode, polarity, setting, period, duty
HPWM DIV64, mode, polarity, setting, period, duty
HPWM OFF
- Mode is a variable/constant which specifies the hardware pwm mode

pwmsingle - 0

pwmhalf - 1

pwmfull_f - 2

pwmfull_r - 3

- polarity is a variable/constant which specifies the active polarity (DCBA)

pwmHHHH - 0

pwmLHLH - 1

pwmHLHL - 2

pwmLLLL - 3

- setting is a variable/constant which specifies a specific setting

single mode - bit mask %0000 to %1111 to dis/enable DCBA

half mode - dead band delay (value 0-127)

full mode - not used, enter 0 as default value

- Period is a variable/constant (0-255) which sets the PWM period

(period is the length of 1 on/off cycle i.e. the total mark:space time).

- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’)

The PWMDIV keyword is used to divide the frequencey by 4, 16 or 64. This slows

down the PWM. 64 is not supported by all parts.

Note that the ‘PWMout Wizard’ from the PICAXE>Wizards menu in the

Programming Editor or AXEpad software can also be used to calculate hpwm

frequencies. See the ‘pwmout’ command for more details about this wizard.

28 pin devices - the 28X1, 28X2, 28X2-3V support hpwm, the 28X2-5V does not.

40 pin devices - the 40X2, 40X2-5V and 40X2-3V parts support hpwm, the 40X1 does

not.

This is a design restriction of the silicon within these particular chips.

Function:

Hardware PWM is an advanced method of motor control using PWM methods. It

can use a number of outputs and modes, as defined by the PIC microcontroller’s

internal pwm hardware.

hpwm can be used instead of, not at the same time as, the pwmout command

on 2 (28/40 pin). However pwmout on 1 can be used simultaneously if desired.

		
		
		

		
		
		
		
		

		
		

����
����

		
		

����

���
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

87

87

www.picaxe.com

Description:

hpwm gives access to the advanced pwm controller in the PIC microcontroller. It

uses up to 4 pins, which are labelled here A,B,C,D for convenience.. Some of

these pins normally ‘default’ to input status, in this case they will automatically

be converted to outputs when the hpwm command is processed.

On 20 pin devices: On 14 pin devices:

A is input 5 (C.5) A is input 2 (C.5)

B is input 4 (C.4) B is input 1 (C.4)

C is input 3 (C.3) C is input 0 (C.3)

D is output 4 (B.4) D is output 5 (C.2)

On 28 pin devices: On 40 pin devices:

A is input 2 (C.2) A is portC 2 (C.2)

B is output 2 (B.2) B is input 5 (D.5)

C is output 1 (B.1) C is input 6 (D.6)

D is output 4 (B.4) D is input 7 (D.7)

 Not all pins are used in all hpwm modes. Unused bits are left as normal i/o pins.

single - A and/or B and/or C and/or D (each bit is selectable)

half - A, B only

full - A, B, C, D

The active polarity of each pair of pins can be selected by the polarity setting:

pwm_HHHH - A and C active high, B and D active high

pwm_LHLH - A and C active high, B and D active low

pwm_HLHL - A and C active low, B and D active high

pwm_LLLL - A and C active low, B and D active low

When using active high outputs, it is important to use a pull-down resistor from

the PICAXE pin (A-D) to 0V. When using active-low outputs a pull-up resistor is

essential. The purpose of the pull-up/down resistor is to hold the FET driver in

the correct state whilst the PICAXE chip initialises upon power up. During this

short initialisation period the drivers are not actively driven (ie they ‘float’) and

so the resistor is essential to hold the FET in the required off condition.

Single Mode
Supported: 20X2, 28X1, 28X2, 28X2-3V, 40X2, 40X2-3V

Not Supported: 14M, 14M2, 20M2, 28X2-5V, 40X1, 40X2-5V

In single mode each pin works independently. It is therefore equivalent to a

pwmout command. However more than one pin can be enabled at a time.

Therefore this mode has two main uses:

1) To allow the equivalent of a ‘pwmout’ command on different outputs (than

the pwmout command)

2) To allow pwmout on more than one pin (up to 4) at the same time. The

pwmout applied to each output is identical. This is often used to provide a

brightness control on multiple LEDs or to control multiple motors.

To enable a single output simply set its corresponding bit to ‘1’ (D-C-B-A) within

the settings byte of the command e.g. to enable all 4 pins use %1111

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

88

88

www.picaxe.com

Half Mode (all parts)
In half mode outputs A and C control a half bridge. C and D are not used. The

PWM signal is output on pin A, while the complementary PWM signal is output

on pin B. The dead band delay ‘setting’ value is a very important value, without a

correct value a shoot-through current may destroy the half bridge setup. This

delay prevents both outputs being active at the same time. The command delay

value (0-127) gives a delay equivalent to (value x oscillator speed (e.g. 4MHz) /

4). The value depends on the switch on/off characteristics of the FET drivers used.

See the hpwm motor driver datasheet for more details.

Full Mode (all parts)
In full bridge mode outputs A, B, C and D control a full bridge.

In forward mode A is driven to its active state whilst D is modulated. B and C are

in their inactive state.

In reverse mode C is driven to its active state whilst B is modulated. A and D are

in their inactive state.

In this mode a deadband delay is generally not required as only one output is

modulated at one time. However there can be conditions (when near 100% duty

cycle) where current shoot-through could occur. In this case it is recommended to

either 1) switch off pwm before changing directions or 2) use a specialist FET

driver that can switch the FET on quicker than it switches off (the opposite is

normally true on non-specialist parts).

See the hpwm motor driver datasheet for more details.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

89

89

www.picaxe.com

hpwm single mode

hpwm full mode

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

90

90

www.picaxe.com

hpwmduty

Syntax:

HPWMDUTY duty cycles
- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’)

Function:

Alter the duty cycle after a hpwm command has been issued.

Information:

The hpwmduty command can be used to alter the hpwm duty cycle without

resetting the internal timer (as occurs with a hpwm command). A hpwm

command must be issued before this command will function.

Information:

See the hpwm command for more details.

Example:

init:
hpwm 0,0,%1111,150,100 ; start pwm

main:
hpwmduty 150 ; set pwm duty
pause 1000 ; pause 1 s
hpwmduty 50 ; set pwm duty
pause 1000 ; pause 1 s
goto main ; loop back to start

		
		
		

		
		
		
		
		

		
		

����
����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

91

91

www.picaxe.com

		
		

����
����

		
����
����

		
		

����

		
		
		

����
		

hserin

Syntax (X2 parts):

HSERIN spaddress, count {,(qualifier)}
HSERIN [timeout, address], spaddress, count {,(qualifier)}
- Qualifier is an optional single variable/constant (0-255) which must be

received before subsequent bytes can be received and stored in scratchpad

- Spaddress is the first scratchpad address where bytes are to be received

- Count is the number of bytes to receive

- Timeout is an optional variables/constants which sets the timeout period in

milliseconds

- Address is a label which specifies where to go if a timeout occurs.

Syntax (M2 parts):

HSERIN var
- Var is a variable to receive the data byte.

Function:

Serial input via the hardware serial input pin (format 8 data, no parity, 1 stop).

Information:

The hserin command is used to receive serial data from the fixed hardware serial

input pin of the microcontroller. It cannot generally be used with the serial

download input pin - use the serrxd command in this case.

Baud rate is defined by the hsersetup command, which must be issued before this

command can be used.

Users familiar with the serin command will note the hserin command has a

completely different format. This is because the hserin command supports much

higher baud rates than serin, and so is unable to process received bytes ’on the fly’

(e.g. by changing ASCII into binary, as with the serin # prefix), as there is

insufficient time for this processing to occur before the next hserin byte is

received (at high baud rates). Therefore the raw data is simply saved in the

memory and the user program must then process the raw data when all the bytes

have been received.

Example - X2 parts:

Note that on X2 parts you may prefer to background receive the serial data into

the scratchpad (hence not requiring use of this command at all) - see the

hsersetup command for more details (hserin only accepts data when the

command is being processed - background receive accepts data all the time).

hsersetup B19200_16, %00 ; baud 19200 at 16MHz

main:

hserin [1000,main],0,4 ; receive 4 bytes into sp

ptr = 0 ; reset sp pointer

hserout 0,(@ptrinc,@ptrinc,@ptrinc,@ptr) ; echo out

goto main ; loop

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

92

92

www.picaxe.com

Example - M2 parts:

On M2 parts the hserin command is used to transfer background received bytes

into a variable. Up to two bytes can be ‘background received’ at any time during

the PICAXE program (not just when the hserin command is processing) and are

temporarily stored in a 2 deep FIFO buffer. Any more than two bytes are lost.

Therefore on M2 parts the hserin command is non-blocking, it always processes

immediately. If there is received data in the internal buffer the first byte is copied

into the variable, if not the variable is left unaltered and the program continues

on the next line. If two bytes are expected in the buffer it is necessary to use two

separate hserin commands to retrieve both bytes.

hsersetup B9600_4, %00 ; baud 9600 at 4MHz

main:

w1 = $FFFF ; set up a non-valid value

hserin w1 ; receive 1 byte into w1

if w1 <> $FFFF then ; if a byte was received

hserout 0,(w1) ; echo it back out

end if

goto main ; loop

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

93

93

www.picaxe.com

		
		

����
����

		
����
����

		
		

����

		
		
		

����
		

hserout

Syntax:

HSEROUT break, ({#}data,{#}data...)
- Break is a variable/constant (0 or1) which indicates whether to send a ‘break’

(wake-up) signal before the data is sent.

- Data are variables/constants (0-255) which provide the data to be output.

Optional #’s are for outputting ASCII decimal numbers, rather than raw

characters. Text can be enclosed in speech marks (“Hello”)

Function:

Transmit serial data via the hardware serial output pin (8 data bits, no parity, 1

stop bit).

Information:

The hserout command is used to transmit serial data from the fixed hardware

serial output pin of the microcontroller. It cannot be used with the serial

download output pin - use the sertxd command in this case.

Polarity and baud rate are defined by the hsersetup command, which must be

issued before this command can be used.

The # symbol allows ASCII output. Therefore #b1, when b1 contains the data

126, will output the ASCII characters “1” ”2” ”6” rather than the raw data byte

‘126’.

Example:

hsersetup B2400_4, %10 ; 2400 baud, inverted polarity

main:

for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value into b1

hserout 0,(b1) ; transmit value to serial LCD

next b0 ; next loop

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

94

94

www.picaxe.com

		
		

����
����

		
����
����

		
		

����

		
		
		

����
		

hsersetup

Syntax:

HSERSETUP OFF
HSERSETUP baud_setup, mode
- Baud_setup is a variable/constant which specifies the baud rate:

B300_X where X =

B600_X 4 for 4MHz

B1200_X 8 for 8 MHZ

B2400_X 16 for 16MHz

B4800_X 20 for 20MHZ

B9600_X 32 for 32MHx

B19200_X 40 for 40 MHz

B31250_X 64 for 64MHz

B38400_X

B57600_X

B115200_X

- Mode is a variable/constant whose bits specify special functions (not all

features are supported on all chips) :

bit0 - background receive serial data to the scratchpad (not M2 parts)

bit1 - invert serial output data (0 = ‘T’, 1 = “N”)

bit 2 - invert serial input data (0 = “T”, 1 = “N”)

bit 3 - disable hserout (1 = hserout pin normal i/o)

bit 4 - disable hserin (1 = hserin pin normal i/o)

Function:

Configure the hardware serial port for serial operation.

Information:

The hsersetup command is used to configure the fixed hardware serial port of the

microcontroller. It configures two pins to be dedicated to hserin and hserout.

Both pins are affected, you cannot use just one pin for input or output.

The baud rate is configured by the baud_setup value. This is a number that sets

the baud rate. For convenience a number of predefined values are predefined (e.g.

B9600_4 for baud rate of 9600,n,8,1 at 4MHz operation). However other baud

rates can also be calculated by the formula provided later in this section.

Hardware serial input can be configured in two ways:

1) via hserin command only (mode bit0 = 0)

2) automatic in the background (mode bit0 = 1) (not M2 parts)

In automatic background mode the hardware serial input is fully automated.

Serial data received by the hardware pin is saved into the scratchpad memory area

as soon as it is received. Upon the hsersetup command the serial pointer

(hserptr) is reset to 0. When a byte is received it is saved to this scratchpad

address, the hserptr variable is incremented and the hserinflag flag is set (must be

cleared by user software). Therefore the value ‘hserptr -1’ indicates the last byte

written, and ‘hserinflag = 1’ indicates a byte has been received (see also the

setintflags command). The scratchpad is a circular buffer that overflows without

warning.

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

95

95

www.picaxe.com

Polarity:

When bit1 is 0, the serial output polarity is ‘True’ which is same as a ‘Txxx’ baud

rate in the ‘serout’ command. In this state the pin idles high and pulses low. This

is the state normally used with a MAX232 type inverter for computer connection.

When bit1 is 1, the serial output polarity is ‘Inverted’ which is same as a ‘Nxxx’

baud rate in the ‘serout’ command. In this state the pin idles low and pulses high.

This is the state normally used with third part devices (e.g. an AXE033 serial LCD)

or director ‘resistor’ connection to a PC.

On some parts the hardware serial input polarity is always true, it cannot be

inverted (ie bit 2 serial input inversion only applies to X2 parts). This is a

limitation of the internal microcontroller structure. Therefore a MAX232 type

inverter is required for computer connections.

Example:

hsersetup B9600_4, %10 ; 9600 baud, inverted TXD

main:

for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value into b1

hserout 0,(b1) ; transmit value to serial LCD

next b0 ; next loop

Advanced Technical Information:

Users may choose to create their own ‘baud_setup’ setting for a specific desired

baud rate. ‘baud_setup’ must be a word value, and can be calculated from the

following equation (where ‘n’ is the baud_setup value):

Desired baud rate = Fosc / (4 (n + 1))

So n = ((Fosc / baud rate) / 4) - 1

So if Fosc (resonator frequency) is 4MHz, and a desired baud rate of 10400

n = ((4 000 000 / 10400) / 4) - 1 = 95 (rounded)

Working the other way around to check the calculation, the exact actual baud rate

at baud_setup value of 95 will be

Baud rate = 4000 000 / (4 (95+1)) = 10416, which is close enough for most

systems!

Therefore the command uses 95 as the baud_value for baud rate 10400 at 4MHz.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

96

96

www.picaxe.com

		
		

����
����

		
����
����

		
		
		

		
		
		
		
		

hspiin (hshin)

Syntax:

HSPIIN (variable, {,variable,...})
- Variable receives the data.

Function:

The hspiin (hshin also accepted by the compiler) command shifts in a data byte

using the SPI hardware pins.

Description:

This command receives SPI data via the microcontroller’s SPI hardware pins. This

method is faster and more code efficient than using the ‘bit-banged’ spiin

command.

When connecting SPI devices (e.g. EEPROM) remember that the data-in of the

EEPROM connects to the data-out of the PICAXE, and vice versa.

Note that a hspisetup command must be issued before this command will

function.

Example:

See the hspisetup command for a detailed example.

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

97

97

www.picaxe.com

		
		

����
����

		
����
����

		
		
		

		
		
		
		
		

hspiout (hshout)

Syntax:

HSPIOUT (data, {,data,...})
- Data is a constant/variable of the byte data to output

Function:

The hspiout (hshout also accepted by the compiler) command shifts out data

byte using the SPI hardware pins.

Description:

This command transmits SPI data via the microcontroller’s SPI hardware pins.

This method is faster and more code efficient than using the ‘bit-banged’ spiout

command.

When connecting SPI devices (e.g. EEPROM) remember that the data-in of the

EEPROM connects to the data-out of the PICAXE, and vice versa.

Note that a hspisetup command must be issued before this command will

function.

Due to the internal operation of the microcontrollers SPI port, a hspiout

command will only function when the hspiin ‘input pin’ is in the expected

default state. If this pin is incorrect (e.g. high when it should be low), the hspiout

byte cannot be sent (as the microcontroller automatically detects an SPI error

condition). After 2.3 seconds of fault condition the PICAXE microcontroller will

automatically reset.

Example:

See the hspisetup command for a detailed example.

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

98

98

www.picaxe.com

		
		

����
����

		
����
����

		
		
		

		
		
		
		
		

hspisetup

Syntax:

HSPISETUP OFF
HSPISETUP mode, spispeed
- Mode is a constant/variable to define the mode

spimode00 (mode 0,0 - input sampled at middle of data time)

spimode01 (mode 0,1 - input sampled at middle of data time)

spimode10 (mode 1,0 - input sampled at middle of data time)

spimode11 (mode 1,1 - input sampled at middle of data time)

spimode00e (mode 0,0 - input sampled at end of data time)

spimode01e (mode 0,1 - input sampled at end of data time)

spimode10e (mode 1,0 - input sampled at end of data time)

spimode11e (mode 1,1 - input sampled at end of data time)

- Spispeed is a constant/variable to define the clock speed

spifast (clock freq / 4) (= 1MHz with 4MHz resonator)

spimedium (clock freq / 16) (= 250kHz with 4MHz resonator)

spislow (clock freq / 64) (= 63 kHz with 4MHz resonator)

Function:

The hpisetup command sets the microcontroller’s hardware pins to SPI mode.

Description:

This command setups the microcontroller for SPI transmission via the

microcontroller’s SPI hardware pins. This method is faster and more code

efficient than using the ‘bit-banged’ spiout (shiftout) command.

When connecting SPI devices (e.g. EEPROM) remember that the data-in (SDI) of

the EEPROM connects to the data-out (SDO) of the PICAXE, and vice versa.

Advanced Technical Information:

Users familiar with assembler code programming may find the following

microcontroller information useful (see Logic Analyser screenshots overleaf).

spimode00 (CKP=0, CKE=1, SMP=0) Mode (0,0)

spimode01 (CKP=0, CKE=0, SMP=0) Mode (0,1)

spimode10 (CKP=1, CKE=1, SMP=0) Mode (1,0)

spimode11 (CKP=1, CKE=0, SMP=0) Mode (1,1)

spimode00e (CKP=0, CKE=1, SMP=1)

spimode01e (CKP=0, CKE=0, SMP=1)

spimode10e (CKP=1, CKE=1, SMP=1)

spimode11e (CKP=1, CKE=0, SMP=1)

Example:

This example shows how to read and write to a 25LC160 EEPROM.

Pin connection of the EEPROM is as follows:

1 - CS picaxe output 7 (B.7)

2 - SO picaxe input 4 (C.4)

3 - WP +5V

4 - Vss 0V

5 - SI picaxe input 5 (C.5)

6 - SCK picaxe input 3 (C.3)

7 - HOLD +5V

8 - Vdd +5V

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

99

99

www.picaxe.com

init:

hspisetup spimode11e, spimedium ; spi mode 1,1

low cs ; enable chip select

hspiout (6) ; send write enable

high cs ; disable chip select

low cs ; enable chip select

hspiout (1,0) ; remove block protection

high cs ; disable chip select

pause 5 ; wait write time

main:

low cs ; enable chip select

hspiout (6) ; send write enable

high cs ; disable chip select

low cs ; enable chip select

hspiout (2,0,5,25) ; write 25 to address 5

high cs ; disable chip select

pause 5 ; wait write time of 5ms

low cs ; enable chip select

hspiout (6) ; send write enable

high cs ; disable chip select

low cs ; enable chip select

hspiout (3,0,5) ; send read command, address 5

hspiin (b1) ; shift in the data

high cs ; disable chip select

low cs ; enable chip select

hspiout (4) ; send write disable

high cs ; disable chip select

debug

pause 1000

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

100

100

www.picaxe.com

hspiout - mode00

hspiout - mode01

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

101

101

www.picaxe.com

hspiout - mode10

hspiout - mode11

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

102

102

www.picaxe.com

i2cslave

This command is deprecated, please consider using the hi2csetup command instead.

Syntax:

I2CSLAVE slaveaddress, mode, addresslen
- SlaveAddress is the i2c slave address

- Mode is the keyword i2cfast (400kHz) or i2cslow (100kHz) at 4Mhz

- Addresslen is the keyword i2cbyte or i2cword

Function:

The i2cslave command (slavei2c also accepted by the compiler) is used to

configure the PICAXE pins for i2c use (in MASTER mode) and to define the type

of i2c device to be addressed.

Description:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

If you are using a single i2c device you generally only need one i2cslave

command within a program. With the PICAXE-18X device you should issue the

command at the start of the program to configure the SDA and SCL pins as

inputs to conserve power.

After the i2cslave has been issued, readi2c and writei2c can be used to access the

i2c device.

Slave Address

The slave address varies for different i2c devices (see table below). For the

popular 24LCxx series serial EEPROMs the address is commonly %1010xxxx.

Note that some devices, e.g. 24LC16B, incorporate the block address (ie the

memory page) into bits 1-3 of the slave address. Other devices include the

external device select pins into these bits. In this case care must be made to

ensure the hardware is configured correctly for the slave address used.

Bit 0 of the slave address is always the read/write bit. However the value entered

using the i2cslave command is ignored by the PICAXE, as it is overwritten as

appropriate when the slave address is used within the readi2c and writei2c

commands.

Mode

Speed mode of the i2c bus can be selected by using one of the two keywords

i2cfast or i2cslow (400kHz or 100kHz). The internal slew rate control of the

microcontroller is automatically enabled at the 400kHz speed (28X/40X). Note

that the 18X internal architecture means that the slower speed is always used with

the 18X, as it is not capable of processing at the faster speed.

Effect of Increased Clock Speed:

Ensure you modify the speed keyword (i2cfast_8, i2cslow_8) at 8MHz or

(i2cfast_16, i2cslow_16) at 16MHz for correct operation.

		
		

����

		
		
		

����
���

		
���
����
����

���
����
����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

103

103

www.picaxe.com

Address Length

i2c devices commonly have a single byte (i2cbyte) or double byte (i2cword)

address. This must be correctly defined for the type of i2c device being used. If

you use the wrong definition erratic behaviour will be experienced.

When using the i2cword address length you must also ensure the ‘address’ used

in the readi2c and writei2c commands is a word variable.

Note this is the EEPROM address length only, not the data bytes themselves. It is

not possible to transmit a word value directly over i2c (e.g. word w0 must be

transmitted as the two separate bytes b0 and b1)

Settings for some common parts:

Device Type Slave Speed Mode
24LC01B EE 128 %1010xxxx i2cfast i2cbyte

24LC02B EE 256 %1010xxxx i2cfast i2cbyte

24LC04B EE 512 %1010xxbx i2cfast i2cbyte

24LC08B EE 1kb %1010xbbx i2cfast i2cbyte

24LC16B EE 2kb %1010bbbx i2cfast i2cbyte

24LC64 EE 8kb %1010dddx i2cfast i2cword

24LC128 EE 16kb %1010dddx i2cfast i2cword

24LC256 EE 32kb %1010dddx i2cfast i2cword

24LC512 EE 64kb %1010dddx i2cfast i2cword

DS1307 RTC %1101000x i2cslow i2cbyte

MAX6953 5x7 LED %101ddddx i2cfast i2cbyte

AD5245 Digital Pot %010110dx i2cfast i2cbyte

SRF08 Sonar %1110000x i2cfast i2cbyte

AXE033 I2C LCD $C6 i2cslow i2cbyte

CMPS03 Compass %1100000x i2cfast i2cbyte

SPE030 Speech %1100010x i2cfast i2cbyte

x = don’t care (ignored)

b = block select (selects internal memory page within device)

d = device select (selects device via external address pin polarity)

See readi2c or writei2c for example program for DS1307 real time clock.

��

��

��
�
��

'
�
��

'

�()

��

��

�*%+(��,�-

��!����,��

.
#���&/�"�%0�+!�1%��2
����"��3�!!�2���!4�"5**
2%�&��� � !%� �%&�!4���&"5!
"�& ��64� ���5 !�1�
���%7�2�!%�5 ��!4�����
2�7�+��*�(��!4� �

�()

��

��

,�-

,��

8
��

�
�
'.%!��!4������2�7�+�

��/�4�7��+4�"��&�1*�9
���!��"�%!�+!��&2�%�
�22�� �"�& �!4�!���**
�* %���:5����+%&&�+!�%&
!%����%������
�""�%"���!��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

104

104

www.picaxe.com

if...then \ elseif...then \ else \ endif

Syntax:

IF variable ?? value {AND/OR variable ?? value ...} THEN
{code}
ELSEIF variable ?? value {AND/OR variable ?? value ...} THEN
{code}
ELSE
{code}
ENDIF

Additional option on X1/X2 parts only :

IF variable BIT value SET THEN
{code}
ELSEIF variable BIT value CLEAR THEN
{code}
ELSE
{code}
ENDIF

- Variable(s) will be compared to value(s).

- Value is a variable/constant.

- Bit is the bit number to check if set (1) or clear (0)

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Function:

Compare and conditionally execute sections of code.

Information:

The multiple line if...then\ elseif \ else \ endif command is used to test input pin

variables (or general variables) for certain conditions. If these conditions are met

that section of the program code is executed, and then program flow jumps to the

endif position. If the condition is not met program flows jumps directly to the

next elseif or else command.

The ‘else’ section of code is only executed if none of the if or elseif conditions

have been true.

When using inputs the input variable (pin1, pin2 etc) must be used (not the

actual pin name 1, 2 etc.) i.e. the line must read ‘if pin1 = 1 then...’, not ‘if 1 = 1

then...’

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

105

105

www.picaxe.com

Note that

if b0 > 1 then (goto) label ;(single line structure)

if b0 > 1 then gosub label ;(single line structure)

if b0 > 1 then…else…endif ;(multi line structure)

are 3 completely separate structures which cannot be combined. Therefore the following

line is invalid as it tries to combine both a single and multi-line structure

if b0 > 1 then goto label else goto label2

This is invalid as the compiler does not know which structure you are trying to use

ie:

if b0 > 1 then goto label : else : goto label2

or

if b0 > 1 then : goto label : else : goto label2

To achieve this structure the line must be re-written as

if b0 > 1 then

goto label

else

goto label2

endif

or

if b0 > 1 then : goto label : else : goto label2 : endif

The : character separates the sections into correct syntax for the compiler.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

106

106

www.picaxe.com

if...then {goto}

if...and/or..then {goto}

Syntax:

IF variable ?? value {AND/OR variable ?? value ...} THEN address
IF variable BIT value SET/CLEAR THEN address (X1/X2 parts only)
- Variable(s) will be compared to value(s).

- Value is a variable/constant.

- Address is a label which specifies where to go if condition is true.

The keyword goto after then is optional.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Function:

Compare and conditionally jump to a new program position.

Information:

The if...then command is used to test input pin variables (or general variables) for

certain conditions. If these conditions are met program flow jumps to the new

label. If the condition is not met the command is ignored and program flow

continues on the next line.

When using inputs the input variable (pin1, pinC.2 etc) must be used (not the

actual pin name 1, 2 etc.) i.e. the line must read ‘if pinC.2 = 1 then...’, not ‘if 2 = 1

then...’. The if...then command only checks an input at the time the command is

processed. Therefore it is normal to put the if...then command within a program

loop that regularly scans the input. For details on how to permanently scan for an

input condition using interrupts see the ‘setint’ command.

Examples:

Checking an input within a loop.

main:

if pinC.0 = 1 then

goto flsh ; jump to flsh if pin0 is high

end if

goto main ; else loop back to start

flsh: high B.1 ; switch on output B.1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output B.1

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

107

107

www.picaxe.com

if porta...then {goto}

if portc...then {goto}

Syntax:

IF PORTA pin ?? value {AND/OR variable ?? value ...} THEN address
IF PORTC pin ?? value {AND/OR variable ?? value ...} THEN address
- Pin is the porta / portc pin to be tested

- Value is a variable/constant.

- Address is a label which specifies where to go if condition is true.

The keyword goto after then is optional.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Function:

Compare and conditionally jump to a new program position.

Information:

This command is only used with the older 28X/X1 parts. For newer parts use
the direct PORT.PIN notation instead e.g. if pinC.1 = 1 then...

Some PICAXE parts have additional inputs on porta and portc. In this case the

PORTA or PORTC keyword is inserted after IF to redirect the whole line to the

desired port. It is possible to use AND and OR within the command, but all pins

tested will be on the same port, it is not possible to mix ports within one line.

The if...then command only checks an input at the time the command is

processed. Therefore it is normal to put the if...then command within a program

loop that regularly scans the input. For details on how to permanently scan for an

input condition using interrupts see the ‘setint’ command.

Examples:

Checking a porta input within a loop.

main:

if porta pin0 = 1 then flsh ; jump to flsh if pin0 is high

goto main ; else loop back to start

flsh: high 1 ; switch on output 1

pause 5000 ; wait 5 seconds

low 1 ; switch off output 1

goto main ; loop back to start

		
		
		

		
���
����

		

���
����

		

		
		
		
		
		

		
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

108

108

www.picaxe.com

if...then exit

if...and/or...then exit

Syntax:

IF variable ?? value {AND/OR variable ?? value ...} THEN EXIT
IF variable BIT value SET/CLEAR THEN EXIT (X1/X2 parts only)
- Variable(s) will be compared to value(s).

- Value is a variable/constant.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Function:

Compare and conditionally exit a do...loop or for...next loop

Information:

The if...then exit command is used to test input pin variables (or general

variables) for certain conditions. If these conditions are met the current loop

(do...loop or for...next) is prematurely ended.

Multiple compares can be combined with the AND and OR keywords. For

examples on how to use AND and OR see the if...then goto command.

Example:

Checking an input within a do loop.

do

if pinC.0 = 1 then exit ; exit if pinC.0 is high

loop

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

109

109

www.picaxe.com

if...then gosub

if...and/or...then gosub

Syntax:

IF variable ?? value {AND/OR variable ?? value ...} THEN GOSUB address
IF variable BIT value SET/CLEAR THEN GOSUB address (X1/X2 parts only)
- Variable(s) will be compared to value(s).

- Value is a variable/constant.

- Address is a label which specifies where to gosub if condition is true.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Function:

Compare and conditionally execute a gosub command.

Information:

The if...then gosub command is used to test input pin variables (or general

variables) for certain conditions. If these conditions are met a sub procedure is

executed. If the condition is not met the command is ignored and program flow

continues on the next line. Any executed sub procedure returns to the next line.

When using inputs the input variable (pin1, pin2 etc) must be used (not the

actual pin name 1, 2 etc.) i.e. the line must read ‘if pin1 = 1 then gosub...’, not ‘if

1 = 1 then gosub...’

The if...then gousb command only checks an input at the time the command is

processed. Therefore it is normal to put the if...then command within a program

loop that regularly scans the input.

Multiple compares can be combined with the AND and OR keywords. For

examples on how to use AND and OR see the if...then goto command.

Example:

Checking an input within a loop.

main:

if pinC.0 = 1 then gosub flsh ; sub to flsh if pin0 is high

goto main ; else loop back to start

flsh: high B.1 ; switch on output B.1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output B.1

return

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

110

110

www.picaxe.com

2 input AND gate

if pinC.1 = 1 and pinC.2 = 1 then gosub label

3 input AND gate

if pinC.0 =1 and pinC.1 =1 and pinC.2 = 1 then gosub label

2 input OR gate

if pinC.1 =1 or pinC.2 =1 then gosub label

analogue value between certain values

readadc 1,b1

if b1 >= 100 and b1 <= 200 then gosub label

To read the whole input port at once the variable ‘pins’ can be used

if pins = %10101010 then gosub label

To read the whole input port and mask individual inputs (e.g. 6 and 7)

let b1 = pins & %11000000

if b1 = %11000000 then gosub label

The words is (=), on (1) and off (0) can also be used with younger students.

loop1:

if pin0 is on then gosub flsh ; flsh if pin0 is high

goto loop1 ; else loop back to start

flsh: high B.1 ; switch on output B.1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output B.1

return ; return

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

111

111

www.picaxe.com

inc

Syntax:

INC var
- var is the variable to increment

Function:

Increment (add 1 to) the variable value.

Information:

This command is shorthand for ‘let var = var + 1’

Example:

for b1 = 1 to 5

 inc b2

next b1

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

112

112

www.picaxe.com

���

�
�

�
�

�
�

�
�

	

�

�

�

��

�

��

�
�

infrain

This command is deprecated, please consider using the irin command instead.

Syntax:

INFRAIN

Function:

Wait until a new infrared command is received.

Description:

This command is primarily used to wait for

a new infrared signal from the infrared TV

style transmitter. It can also be used with an

infraout signal from a separate PICAXE chip.

All processing stops until the new command

is received. The value of the command

received is placed in the predefined variable

‘infra’.

The infra-red input is input 0 on all parts that

support this command. See also infrain2.

The variable ‘infra’ is separate from the other byte

variables.

After using this command you may have to

perform a ‘hard reset’ to download a new

program to the microcontroller. See the

Serial Download section for more details.

Effect of Increased Clock Speed:

This command will only function at 4MHz

Use of TVR010 Infrared Remote Control:

The table shows the value that will be

placed into the variable ‘infra’ depending

on which key is pressed on the transmitter.

Before use (or after changing batteries) the

TVR010 transmitter must be programmed

with ‘Sony’ codes as follows:

1. Insert 3 AAA size batteries, preferably

alkaline.

2. Press ‘C’. The LED should light.

3. Press ‘2’. The LED should flash.

4. Press ‘1’. The LED should flash.

5. Press ‘2’. The LED should flash and then go out.

Key Value

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

P+ 10

0 11

V+ 12

P- 13

10+ 14

V- 15

Mute 16

Power 17

��

�(
)

��

��)5�
�

�
�
�

�����

�&"5!�"�&

�
�
�

		
		
		

		
		
		
		

���

���
���
		
		

���
		
		

		
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

113

113

www.picaxe.com

Example:

main:

infrain ;wait for new signal

if infra = 1 then swon1 ;switch on 1

if infra = 2 then swon2 ;switch on 2

if infra = 3 then swon3 ;switch on 3

if infra = 4 then swoff1 ;switch off 1

if infra = 5 then swoff2 ;switch off 2

if infra = 6 then swoff3 ;switch off 3

goto main

swon1: high 1

goto main

swon2: high 2

goto main

swon3: high 3

goto main

swoff1: low 1

goto main

swoff2: low 2

goto main

swoff3: low 3

goto main

���

� � �

� � �

� � 	

� �

� ����

� ���
�

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

114

114

www.picaxe.com

infrain2

This command is deprecated, please consider using the irin command instead.

Syntax:

INFRAIN2

Function:

Wait until a new infrared command is received.

Description:

This command is used to wait for an

infraout signal from a separate PICAXE

chip. It can also be used with an infrared

signal from the infrared TV style transmitter

(i.e.. can replace infrain). All processing

stops until the new command is received.

The value of the command received is

placed in the predefined variable ‘infra’. This

will be a number between 0 and 127. See

the infraout command description for more

details about the values that will be received

from the TVR010 remote control.

On the PICAXE-08M/14M/20M ‘infra’ is another name for ‘b13’ - it is the same

variable. The infra-red input is fixed to a single input - see the PICAXE pinout

diagrams. On M2 parts the compiler outputs an irin command using b13.

After using this command you may have to perform a ‘hard reset’ to download a

new program to the microcontroller. See the Serial Download section for more

details.

Effect of Increased Clock Speed:

This command will only function at 4MHz. Use a setfreq m4 command before

this command if using 8MHz speed,

Example:

main:

infrain2 ; wait for new signal

if infra = 1 then swon1 ; switch on 1

if infra = 4 then swoff1 ; switch off 1

goto main

swon1: high 1

goto main

swoff1: low 1

goto main

��

�(
)

��

��)5�
�

�
�
�

�����

�&"5!�"�&

�
�
�

		
���
���

����
���

		
���

����

���
���
		
		

���
		
		

���
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

115

115

www.picaxe.com

infraout

This command is deprecated, please consider using the irout command instead.

Syntax:

INFRAOUT device,data
- device is a constant/variable (valid device ID 1-31)

- data is a constant/variable (valid data 0-127)

Function:

Transmit an infra-red signal, modulated at 38kHz.

Description:

This command is used to transmit the infra-red data to Sony ™ device (can also be

used to transmit data to another PICAXE that is using the infrain or infrain2

command). Data is transmitted via an infra-red LED (connected on output 0)

using the SIRC (Sony Infra Red Control) protocol.

device - 5 bit device ID (0-31)

data - 7 bit data (0-127)

When using this command to transmit data to another PICAXE the device ID

used must be value 1 (TV). The infraout command can be used to transmit any of

the valid TV command 0-127. Note that the Sony protocol only uses 7 bits for

data, and so data of value 128 to 255 is not valid.

Therefore the valid infraout command for use with infrain2 is

infraout 1,x ‘;(where x = 0 to 127)

Sony SIRC protocol:

The SIRC protocol uses a 38KHz modulated infra-red signal consisting of a start

bit (2.4ms) followed by 12 data bits (7 data bits and 5 device ID bits). Logic level

1 is transmitted as a 1.2 ms pulse, logic 0 as a 0.6ms pulse. Each bit is separated

by a 0.6ms silence period.

Example:

All commercial remote controls repeat the signal every 45ms whilst the button is

held down. Therefore when using the PICAXE system higher reliability may be

gained by repeating the transmission (e.g. 10 times) within a for..next loop.

for b1 = 1 to 10
 infraout 1,5
 pause 45
next b1

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 ID0 ID1 ID2 ID3 ID4

2.4ms
1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

		
���

����

		
		

���
����

		

		
		
		
		

		
		
		

���
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

116

116

www.picaxe.com

Interaction between infrain, infrain2 and infraout command.

Infrain and Infraout

The original infrain command

was designed to react to signals

from the TV style remote control

TVR010. Therefore it only

acknowledges the data sent from

the 17 buttons on this remote

(1-9, 0. 10+, P+, P-, V+, V-,

MUTE, PWR) with a value

between 1 and 17.

The infraout command can be

used to ‘emulate’ the TVR010

remote to transit signals that will

be acceptable for the infrain

command. The values to be used

for each TV remote button are

shown in the table.

Infrain2 and Infraout

The infrain2 command will react

to any of the valid TV data

commands (0 to 127).

The infraout command can be

used to transmit any of the valid

TV command 0-127. Note that

the Sony protocol only uses 7

bits for data, and so data of 128

to 255 is not valid.

Therefore the valid infraout

command for use with infrain2

is (where x = 0 to 127)

infraout 1,x

Effect of Increased Clock Speed:

This command will only function at 4MHz.

Common Sony Device IDs.:

TV 1 VTR3 11

VTR1 2 Surround Sound 12

Text 3 Audio 16

Widescreen 4 CD Player 17

MDP / Laserdisk 6 Pro-Logic 18

VTR2 7 DVD 26

TVR010 TV
Remote
Control

infraout / irout
command

infrain
variable data

value

infrain2, Irin
variable data

value

1 infraout 1,0 1 0

2 infraout 1,1 2 1

3 infraout 1,2 3 2

4 infraout 1,3 4 3

5 infraout 1,4 5 4

6 infraout 1,5 6 5

7 infraout 1,6 7 6

8 infraout 1,7 8 7

9 infraout 1,8 9 8

P+ infraout 1,16 10 16

0 infraout 1,9 11 9

V+ infraout 1,18 12 18

P- infraout 1,17 13 17

10+ infraout 1,12 14 12

V- infraout 1,19 15 19

MUTE infraout 1,20 16 20

PWR infraout 1,21 17 21

���

�
�

�
�

�
�

�
�

	

�

�

�

��

�

��

�
�

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

117

117

www.picaxe.com

Button infraout data for a typical Sony TV (device ID 1)

 000 1 button

 001 2 button

 002 3 button

 003 4 button

 004 5 button

 005 6 button

 006 7 button

 007 8 button

 008 9 button

 009 10 button/0 button

 011 Enter

 016 channel up

 017 channel down

 018 volume up

 019 volume down

 020 Mute

 021 Power

 022 Reset TV

 023 Audio Mode:Mono/SAP/Stereo

 024 Picture up

 025 Picture down

 026 Color up

 027 Color down

 030 Brightness up

 031 Brightness down

 032 Hue up

 033 Hue down

 034 Sharpness up

 035 Sharpness down

 036 Select TV tuner

 038 Balance Left

 039 Balance Right

 041 Surround on/off

 042 Aux/Ant

 047 Power off

 048 Time display

 054 Sleep Timer

 058 Channel Display

 059 Channel jump

 064 Select Input Video1

 065 Select Input Video2

 066 Select Input Video3

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

118

118

www.picaxe.com

Button infraout data for a typical Sony TV (continued...)

 074 Noise Reduction on/off

 078 Cable/Broadcast

 079 Notch Filter on/off

 088 PIP channel up

 089 PIP channel down

 091 PIP on

 092 Freeze screen

 094 PIP position

 095 PIP swap

 096 Guide

 097 Video setup

 098 Audio setup

 099 Exit setup

 107 Auto Program

 112 Treble up

 113 Treble down

 114 Bass up

 115 Bass down

 116 + key

 117 - key

 120 Add channel

 121 Delete channel

 125 Trinitone on/off

 127 Displays a red RtestS on the screen

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

119

119

www.picaxe.com

Button infraout data for a typical Sony VCR (device ID 2 or 7)

 000 1 button

 001 2 button

 002 3 button

 003 4 button

 004 5 button

 005 6 button

 006 7 button

 007 8 button

 008 9 button

 009 10 button/0 button

 010 11 button

 011 12 button

 012 13 button

 013 14 button

 020 X 2 play w/sound

 021 power

 022 eject

 023 L-CH/R-CH/Stereo

 024 stop

 025 pause

 026 play

 027 rewind

 028 FF

 029 record

 032 pause engage

 035 X 1/5 play

 040 reverse visual scan

 041 forward visual scan

 042 TV/VTR

 045 VTR from TV

 047 power off

 048 single frame reverse/slow reverse play

 049 single frame advance/slow forward play

 060 aux

 070 counter reset

 078 TV/VTR

 083 index (scan)

 106 edit play

 107 mark

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

120

120

www.picaxe.com

input

Syntax:

INPUT pin,pin,pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin an input.

Information:

This command is only required on microcontrollers with programmable input/

output pins. This command can be used to change a pin that has been configured

as an output back to an input.

All pins are configured as inputs on first power-up (unless the pin is a fixed

output). Fixed pins are not affected by this command. These pins are:

08, 08M, 08M2 0 = fixed output 3 = fixed input

14M2 B.0 = fixed output C.3 = fixed input

18M2 C.3 = fixed output C.4, C.5 = fixed input

20M2, 20X2 A.0 = fixed output C.6 = fixed input

28X2, 40X2 A.4 = fixed output

Example:

main:

input B.1 ; make pin input

reverse B.1 ; make pin output

reverse B.1 ; make pin input

output B.1 ; make pin output

		
		
		

����
		

��
���

����

		
		
		

����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

121

121

www.picaxe.com

		
		
		
		
		

		
		
		

		
		
		
		

		
		
		

		
����

		
����

		

inputtype

Syntax:

INPUTTYPE mask
- Mask is a variable/constant which specifies the input pin type.

Function:

Make pin an input of hardware silicon type TTL (0) or ST (1).

Information:

Microcontroller inputs can be of two types, TTL compatible or ST (Schmitt

Trigger). On most PICAXE chips this type is predefined by the internal silicon

design and cannot be changed. Many chips contain a mixture of both types. See

the tables overleaf for more details about the type of each PICAXE chip input.

However, with improvements in silicon technology, on the more recent M2 parts

each input can be user configured to be either the TTL (0) or ST (1) type. Mask is

a word length value where bits0-7 correspond to B.0 to B.7 and bits8-15

correspond to C.0 to C.7. Setting a bit to 1 makes it a ST type input, setting abit

to 0 makes it a TTL type (power up value is 0, TTL, on all pins).

The difference between TTL/ST input pin types is as follows:

Schmitt Trigger (ST) Examples: 5V 3V

Status ‘high’ if > 0.8 * Vsupply >4V >2.4V

Status ‘low’ if < 0.2 * Vsupply <1V <0.6V

TTL (Supply voltage > 4.5V)

Status ‘high’ if > 2.0V >2V n/a

Status ‘low’ if < 0.8V <0.8V n/a

TTL (Supply voltage < 4.5V)

Status ‘high’ if > 0.25 * Vsupply + 0.8V n/a >1.55V

Status ‘low’ if < 0.15 * Vsupply n/a <0.45V

Values between these voltages are ‘floating’ and cannot be reliably used as either

a high or low signal.

Therefore in general TTL inputs are considered more versatile, as, for instance, at a

5V supply they will be guaranteed a ‘high’ signal at above 2V instead of at above

4V. However on some occasions Schmitt Trigger inputs may be desired.

Example:

main:

inputtype %0000000000001111 ; make pin B.0 to B.3 ST

inputtype %0000111100000000 ; make pin C.0 to C.3 ST

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

122

122

www.picaxe.com

Input Pin Types:

 08M2 08M 08

Serin TTL TTL TTL

C.1 TTL TTL TTL

C.2 ST ST ST

C.3 TTL TTL TTL

C.4 TTL TTL TTL

 14M2* 14M

Serin TTL TTL

B.0 TTL n/a

B.1 TTL n/a

B.2 TTL n/a

B.3 TTL n/a

B.4 TTL n/a

B.5 TTL n/a

C.0 TTL TTL

C.1 TTL TTL

C.2 TTL TTL

C.3 TTL TTL

C.4 TTL TTL

* 14M2 pins can be reconfigured via ‘inputtype’ command

 18M2 18X 18M 18A 18

Serin TTL ST ST ST ST

B.0 TTL n/a n/a n/a n/a

B.1 TTL n/a n/a n/a n/a

B.2 TTL n/a n/a n/a n/a

B.3 TTL n/a n/a n/a n/a

B.4 TTL n/a n/a n/a n/a

B.5 TTL n/a n/a n/a n/a

B.6 TTL n/a n/a n/a n/a

B.7 TTL n/a n/a n/a n/a

C.0 TTL TTL TTL TTL ST

C.1 TTL TTL TTL TTL ST

C.2 TTL TTL TTL TTL ST

C.5 TTL n/a n/a n/a n/a

C.6 TTL ST ST ST ST

C.7 TTL ST ST ST ST

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

123

123

www.picaxe.com

 20X2 20M2* 20M

Serin TTL TTL TTL

B.0 TTL TTL n/a

B.1 TTL TTL n/a

B.2 ST TTL n/a

B.3 ST TTL n/a

B.4 ST TTL n/a

B.5 TTL TTL n/a

B.6 TTL TTL n/a

B.7 TTL TTL n/a

C.0 TTL TTL TTL

C.1 ST TTL ST

C.2 ST TTL ST

C.3 ST TTL ST

C.4 ST TTL ST

C.5 ST TTL ST

C.6 TTL TTL TTL

C.7 TTL TTL TTL

* 20M2 pins can be reconfigured via ‘inputtype’ command

 28X2 28X2-5V 28X2-3V 28X1 28X 28A 28

Serin ST ST ST ST ST ST ST

A.0 TTL TTL TTL TTL TTL ADC ADC

A.1 TTL TTL TTL TTL TTL ADC ADC

A.2 TTL TTL TTL TTL TTL ADC ADC

A.3 TTL TTL TTL TTL TTL ADC ADC

B.0 TTL TTL TTL n/a n/a n/a n/a

B.1 TTL TTL TTL n/a n/a n/a n/a

B.2 TTL TTL TTL n/a n/a n/a n/a

B.3 TTL TTL TTL n/a n/a n/a n/a

B.4 TTL TTL TTL n/a n/a n/a n/a

B.5 TTL TTL TTL n/a n/a n/a n/a

B.6 TTL TTL TTL n/a n/a n/a n/a

B.7 TTL TTL TTL n/a n/a n/a n/a

C.0 TTL ST ST ST ST ST ST

C.1 TTL ST ST ST ST ST ST

C.2 TTL ST ST ST ST ST ST

C.3 TTL ST ST ST ST ST ST

C.4 TTL ST ST ST ST ST ST

C.5 TTL ST ST ST ST ST ST

C.6 TTL ST ST ST ST ST ST

C.7 TTL ST ST ST ST ST ST

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

124

124

www.picaxe.com

 40X2 40X2-5V 40X2-3V 40X1 40X

Serin ST ST ST ST ST

A.0 TTL TTL TTL TTL TTL

A.1 TTL TTL TTL TTL TTL

A.2 TTL TTL TTL TTL TTL

A.3 TTL TTL TTL TTL TTL

A.5 TTL ST ST ADC ADC

A.6 TTL ST ST ADC ADC

A.7 TTL ST ST ADC ADC

B.0 TTL TTL TTL n/a n/a

B.1 TTL TTL TTL n/a n/a

B.2 TTL TTL TTL n/a n/a

B.3 TTL TTL TTL n/a n/a

B.4 TTL TTL TTL n/a n/a

B.5 TTL TTL TTL n/a n/a

B.6 TTL TTL TTL n/a n/a

B.7 TTL TTL TTL n/a n/a

C.0 TTL ST ST ST ST

C.1 TTL ST ST ST ST

C.2 TTL ST ST ST ST

C.3 TTL ST ST ST ST

C.4 TTL ST ST ST ST

C.5 TTL ST ST ST ST

C.6 TTL ST ST ST ST

C.7 TTL ST ST ST ST

D.0 TTL TTL TTL TTL TTL

D.1 TTL TTL TTL TTL TTL

D.2 TTL TTL TTL TTL TTL

D.3 TTL TTL TTL TTL TTL

D.4 TTL TTL TTL TTL TTL

D.5 TTL TTL TTL TTL TTL

D.6 TTL TTL TTL TTL TTL

D.7 TTL TTL TTL TTL TTL

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

125

125

www.picaxe.com

irin

Syntax:

IRIN pin, variable
IRIN [timeout], pin, variable
IRIN [timeout, address], pin, variable
- Timeout is a variable/constant which sets

the timeout period in milliseconds

- Address is a label which specifies where to go if a timeout occurs.

- pin is a variable/constant which specifies the i/o pin to use.

- Variable receives the data

Function:

Wait until a new infrared command

is received. This command is similar

to the ‘infrain2’ command found on

other PICAXE devices, but can be

used on any input pin.

Description:

This command is used to wait for an

infraout signal from a separate

PICAXE chip. It can also be used

with an infrared signal from the infrared TV style transmitter (i.e.. can replace

infrain). All processing stops until the new command is received, but after a

timeout period program flow will jump to ‘address’. The value of the command

received is placed into the defined variable. This will be a number between 0 and

127. See the infraout command description for more details about the values that

will be received from the TVR010 remote control.

To replace an infrain / infrain2 command with irin use these two lines:

symbol infra = b13 ; define an infra variable

irin C.0, infra ; read input C.0 into infra

Effect of Increased Clock Speed:

This command will automatically use the internal 4MHz resonator for correct

operation.

Example:

main:

irin [1000,main],C.3,b0 ;wait for new signal

if b0 = 1 then swon1 ;switch on 1

if b0 = 4 then swoff1 ;switch off 1

goto main

swon1: high B.1

goto main

swoff1: low B.1

goto main

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 ID0 ID1 ID2 ID3 ID4

2.4ms
1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

�
�
�

��

�(
)

��

��)5�
�

�
�
�

�����

�&"5!�"�&

		
		

����

		
		
		

����
		

		
		

����
����

		
����
����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

126

126

www.picaxe.com

TVR010 TV
Remote
Control

irout command
infrain

variable data
value

infrain2, irin
variable data

value

1 irout pin,1,0 1 0

2 irout pin,1,1 2 1

3 irout pin,1,2 3 2

4 irout pin,1,3 4 3

5 irout pin,1,4 5 4

6 irout pin,1,5 6 5

7 irout pin,1,6 7 6

8 irout pin,1,7 8 7

9 irout pin,1,8 9 8

P+ irout pin,1,16 10 16

0 irout pin,1,9 11 9

V+ irout pin,1,18 12 18

P- irout pin,1,17 13 17

10+ irout pin,1,12 14 12

V- irout pin,1,19 15 19

MUTE irout pin,1,20 16 20

PWR irout pin,1,21 17 21

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

127

127

www.picaxe.com

		
		

����

		
		
		

����
		

		
		

����
����

		
����
����

irout

Syntax:

IROUT pin,device,data
- pin is a variable/constant which specifies the i/o pin to use.

- device is a constant/variable (valid device ID 1-31)

- data is a constant/variable (valid data 0-127)

Function:

Transmit an infra-red signal, modulated at 38kHz.

This command is similar to the ‘infraout’ command found on earlier PICAXE

devices, but can be used on any output pin.

Description:

This command is used to transmit the infra-red data to Sony ™ device (can also be

used to transmit data to another PICAXE that is using the irin, infrain or infrain2

command). Data is transmitted via an infra-red LED using the SIRC (Sony Infra

Red Control) protocol.

device - 5 bit device ID (0-31)

data - 7 bit data (0-127)

When using this command to transmit data to another PICAXE the device ID

used must be value 1 (TV). The irout command can be used to transmit any of

the valid TV command 0-127. Note that the Sony protocol only uses 7 bits for

data, and so data of value 128 to 255 is not valid.

Therefore the valid infraout command for use with infrain2/infrain/irin is

irout 1,1,x ; (where x = 0 to 127)

Sony SIRC protocol:

The SIRC protocol uses a 38KHz modulated infra-red signal consisting of a start

bit (2.4ms) followed by 12 data bits (7 data bits and 5 device ID bits). Logic level

1 is transmitted as a 1.2 ms pulse, logic 0 as a 0.6ms pulse. Each bit is separated

by a 0.6ms silence period. For more information about the protocol see the

‘infraout’ command description.

Effect of Increased Clock Speed:

This command will automatically use the internal 4MHz resonator for correct

operation.

Example:

All commercial remote controls repeat the signal every 45ms whilst the button is

held down. Therefore when using the PICAXE system higher reliability may be

gained by repeating the transmission (e.g. 10 times) within a for..next loop.

for b1 = 1 to 10
 irout 1,1,5
 pause 45
next b1

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

128

128

www.picaxe.com

TVR010 TV
Remote
Control

irout command
infrain

variable data
value

infrain2, irin
variable data

value

1 irout pin,1,0 1 0

2 irout pin,1,1 2 1

3 irout pin,1,2 3 2

4 irout pin,1,3 4 3

5 irout pin,1,4 5 4

6 irout pin,1,5 6 5

7 irout pin,1,6 7 6

8 irout pin,1,7 8 7

9 irout pin,1,8 9 8

P+ irout pin,1,16 10 16

0 irout pin,1,9 11 9

V+ irout pin,1,18 12 18

P- irout pin,1,17 13 17

10+ irout pin,1,12 14 12

V- irout pin,1,19 15 19

MUTE irout pin,1,20 16 20

PWR irout pin,1,21 17 21

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

129

129

www.picaxe.com

		
		
		

kbin

Syntax:

KBIN variable
KBIN [timeout], variable
KBIN [timeout, address],variable
KBIN #variable (M2 parts only)
KBIN [timeout], #variable (M2 parts only)
KBIN [timeout, address], #variable (M2 parts only)
- Variable receives the key

- Timeout is a variable/constant which sets

the timeout period in milliseconds

- Address is a label which specifies where to go if a timeout occurs.

Function:

Wait until a new keyboard press is received. This command is similar to the keyin

command found on older PICAXE parts, but also includes a timeout option.

Information:

This command is used to wait for a new key press from a computer keyboard

(connected directly to the PICAXE - not the keyboard used whilst programming,

see keyled command for connection details). All processing stops until the new

key press is received, but program flow will jump to address after the timeout

period. The value of the key press received is placed in the variable.

Note the design of the keyboard means that the value of each key is not logical,

each key value must be identified from the table (see table on next page). Some

keys use two numbers, the first $E0 is ignored by the PICAXE and so keyvalue

will return the second number. Note all the codes are in hex and so should be

prefixed with $ whilst programming. The PAUSE and PRNT SCRN keys cannot be

used reliably as they have a special long multi-digit code. Also note that some

keys may not work correctly when the ‘Nums Lock’ LED is set on with the keyled

command.

To overcome some of these issues the #variable option has been added to M2

parts. In this case the ASCII character of the keyboard letter is loaded into the

variable. Unsupported characters like ‘Ctrl’ will get an ASCII “?” returned.

For older parts yhe sample file ‘keyin.bas’ (installed in the \samples folder)

provides details on how you can convert the key presses into ASCII characters by

means of a look up table.

Effect of Increased Clock Speed:

This command will automatically use the internal 4MHz resonator for correct

operation.

		
		
		

����
		

		
		

����
����

		
����
����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

130

130

www.picaxe.com

Example:

main:

kbin [1000,main],b1

if b1 = $45 then

low b.1

end if

if b1= $25 then

high b.1

end if

goto main

��� ���� ��� ���� ��� ����

� �� � �� � ��

	
� � � ����� ����

� �
 � � ��� ����

� �
 � �� ���� ����

 �
 � �� � � ����

! 	
 ��"	 �� �� ����

� �� ���� �
 ���� ����

� �� 	�� �� #����� ����

� �� ���� $� #���� 	���

% 	� �!���
� #�����
���

"
� ��� �� #����� ����

 	� ��� !��� ��� ��

� �� � � �� &�" ����

� �� �!��� �� '�" ��

� �� ���� ���� ��" 	�

� �� ���� �
�� (�" ��

) �� � �� ���� ��" ����

� �
 ���� !
�� *�" ��

� 	� ��� �� ��" ��

� �
 �� �� ��" ��

� �� �! ��
�"
�

+ �

! �� ��" ��

# �� �! �� ��" 	�

,

 �! �� ��" ��

- �� �! �� ��" ��

. �� �! 	� ��" ��

� �� �! �$ $�" ��

� �� $! �� ��" ��

 � �! �� / 	�

� �
 ��! �� 0 ��

� �
 ��! $� 1
�

�

�! �� � ��

� �� ������� 22 * ��

� �� ���� � & ��

$ � ���� 22

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

131

131

www.picaxe.com

keyin

This command is deprecated, please consider using the kbin command instead.

Syntax:

KEYIN

Function:

Wait until a new keyboard press is received.

Information:

This command is used to wait for a new key press from a computer keyboard

(connected directly to the PICAXE - not the keyboard used whilst programming,

see keyled command for connection details). All processing stops until the new

key press is received. The value of the key press received is placed in the

predefined variable ‘keyvalue’.

Note the design of the keyboard means that the value of each key is not logical,

each key value must be identified from the table on the next page. Some keys use

two numbers, the first $E0 is ignored by the PICAXE and so keyvalue will return

the second number. Note all the codes are in hex and so should be prefixed with

$ whilst programming. The PAUSE and PRNT SCRN keys cannot be used reliably

as they have a special long multi-digit code.. Also note that some keys may not

work correctly when the ‘Nums Lock’ LED is set on with the keyled command.

The sample file ‘keyin.bas’ (installed in the \samples folder) provides details on

how you can convert the key presses into ASCII characters by means of a look up

table.

After using this command you may have to perform a ‘hard reset’ to download a

new program to the microcontroller. See the Serial Download section for more

details.

Effect of Increased Clock Speed:

This command will only function at 4MHz.

Example:

main:

keyin ;wait for new signal

if keyvalue = $45 then swon1 ;switch on 1

if keyvalue = $25 then swoff1 ;switch off 1

goto main

swon1: high 1

goto main

swoff1: low 1

goto main

		
		
		

		
���

		
		

���

		
���
		
		

���
		
		

		
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

132

132

www.picaxe.com

��� ���� ��� ���� ��� ����

� �� � �� � ��

	
� � � ����� ����

� �
 � � ��� ����

� �
 � �� ���� ����

 �
 � �� � � ����

! 	
 ��"	 �� �� ����

� �� ���� �
 ���� ����

� �� 	�� �� #����� ����

� �� ���� $� #���� 	���

% 	� �!���
� #�����
���

"
� ��� �� #����� ����

 	� ��� !��� ��� ��

� �� � � �� &�" ����

� �� �!��� �� '�" ��

� �� ���� ���� ��" 	�

� �� ���� �
�� (�" ��

) �� � �� ���� ��" ����

� �
 ���� !
�� *�" ��

� 	� ��� �� ��" ��

� �
 �� �� ��" ��

� �� �! ��
�"
�

+ �

! �� ��" ��

# �� �! �� ��" 	�

,

 �! �� ��" ��

- �� �! �� ��" ��

. �� �! 	� ��" ��

� �� �! �$ $�" ��

� �� $! �� ��" ��

 � �! �� / 	�

� �
 ��! �� 0 ��

� �
 ��! $� 1
�

�

�! �� � ��

� �� ������� 22 * ��

� �� ���� � & ��

$ � ���� 22

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

133

133

www.picaxe.com

kbled (keyled)

Syntax:

kbled mask
- Mask is a variable/constant which specifies the LEDs to use.

Function:

Set/clear the keyboard LEDs

Information:

This command is used to control the LEDs on a computer keyboard (connected

directly to the PICAXE - not the keyboard used whilst programming). The mask

value sets the operation of the LEDs.

Mask is used as follows:

Bit 0 - Scroll Lock (1=on, 0=off)

Bit 1 - Num Lock (1=on, 0=off)

Bit 2 - Caps Lock (1=on, 0=off)

Bit 3-6 - Not Used

Bit 7 - Disable Flash (1=no flash, 0=flash)

On reset mask is set to 0, and so all three LEDs will flash when the ‘keyin’

command detects a new key hit. This provides the user with feedback that the key

press has been detected by the PICAXE. This flashing can be disabled by setting

bit 7 of mask high. In this case the condition of the three LEDs can be manually

controlled by setting/clearing bits 2-0.

Effect of Increased Clock Speed:

This command will only function at 4MHz.

Example:

main:

keyled %10000111 ; all LEDs on

pause 500 ; pause 0.5s

keyled %10000000 ; all LEDs off

pause 500 ; pause 0.5s

goto main ; loop

��

��

;
'
<

=
�
�
�

�()

��

��

�*%+(

��!�

.
#��% !�"�%0�+!�1%��2
����"��3�!!�2���!4�"5**
2%�&��� � !%� �%&�!4���&"5!
"�& ��64� ���5 !�1�
���%7�2�!%�5 ��!4�
(�/1%��2�*�(��!4� �

�()

��

��

�&"5!�

�&"5!)

8
��

�
�
'

�

�

�

�

�	���
����	��
������
�����!��>!%�8����'��&"5!)?
���.%!�5 �2
������@�%5&2
�������,5""*/
����*%+(�>!%�8����'��&"5!�?
���.%!�5 �2

,%+(�!�>%&�"+1?

8*5A�>%&�+�1*�?

� �

� �

� �

� �

� �

� �

		
		
		

		
		
		

����
���

		
���
����
����

���
����
����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

134

134

www.picaxe.com

let

Syntax:

{LET} variable = {-} value ?? value ...
- Variable will be operated on.

- Value(s) are variables/constants which operate on variable.

Function:

Perform variable manipulation (wordsize-to-wordsize).

Maths is performed strictly from left to right.

The ‘let’ keyword is optional.

Information:

The microcontroller supports word (16 bit) mathematics. Valid integers are 0 to

65535. All mathematics can also be performed on byte (8 bit) variables (0-255).

The microcontroller does not support fractions or negative numbers.

However it is sometimes possible to rewrite equations to use integers instead of

fractions, e.g.

let w1 = w2 / 5.7
is not valid, but

let w1 = w2 * 10 / 57
is mathematically equal and valid.

The mathematical functions supported by all parts are:

+ ; add

- ; subtract

* ; multiply (returns low word of result)

** ; multiply (returns high word of result)

/ ; divide (returns quotient)

// (or %) ; modulus divide (returns remainder)

MAX ; limit value to a maximum value

MIN ; limit value to a minimum value

AND & ; bitwise AND

OR | ; bitwise OR (typed as SHIFT + \ on UK keyboard)

XOR ^ ; bitwise XOR (typed as SHIFT + 6 on UK keyboard)

NAND ; bitwise NAND

NOR ; bitwise NOR

ANDNOT &/ ; bitwise AND NOT (NB this is not the same as NAND)

ORNOT |/ ; bitwise OR NOT (NB this is not the same as NOR)

XNOR ^/ ; bitwise XOR NOT (same as XNOR)

The X1 and X2 parts also support

<< ; shift left

>> ; shift right

*/ ; multiply (returns middle word of result)

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

135

135

www.picaxe.com

The X1 and X2 parts also support these unary commands

SIN ; sine of angle (0 to 65535) in degrees (value * 100 is returned)

COS ; cosine of angle in degrees (value * 100 is returned)

SQR ; square root

INV ; invert

NCD ; encoder (2n power encoder)

DCD ; decoder (2n power decoder)

BINTOBCD ; convert binary value to BCD

BCDTOBIN ; convert BCD value to binary

REV ; reverse a number of bits

DIG ; return a BCD digit

All mathematics is performed strictly from left to right.

On X1 and X2 parts it is possible to enclose part equations in brackets e.g.

let w1 = w2 / (b5 + 2)

On all other chips it is not possible to enclose part equations in brackets e.g.

let w1 = w2 / (b5 + 2)
is not valid. This would need to be entered as an equivalent e.g.

let w1 = b5 + 2
let w1 = w2 / w1

Further Information:

For further information please see the ‘variable mathematics’ section of this

manual.

Example:

main:

inc b0 ; increment b0

sound B.7,(b0,50) ; make a sound

if b0 > 50 then rest ; after 50 reset

goto main ; loop back to start

rest:

let b0 = b0 max 10 ; limit b0 back to 10

; as 10 is the maximum value

goto main ; loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

136

136

www.picaxe.com

let dirs / dirsc =

For M2 and X2 parts see the next page.

Syntax:

{LET} dirs = value
{LET} dirsc = value
- Value(s) are variables/constants which operate on the data direction register.

Function:

Configure pins as inputs or outputs (let dirs =) (08/08M/08M2)

Configure pins as inputs or outputs on portc (let dirsc =) (14M)

Configure pins as inputs or outputs on portc (let dirsc =) (28X/40X)

Configure pins as inputs or outputs on portc (let dirsc =) (28X1/40X1)

Information:

Some microcontrollers allow inputs to be configured as inputs or outputs. In

these cases it is necessary to tell the microcontroller which pins to use as inputs

and/or outputs (all are configured as inputs on first power up). There are a

number of ways of doing this:

1) Use the input/output/reverse commands.

2) Use an output command (high, pulsout etc) that automatically configures the

pin as an output.

3) Use the let dirs = statement.

When working with this statement it is conventional to use binary notation. With

binary notation pin 7 is on the left and pin 0 is on the right. If the bit is set to 0

the pin will be an input, if the bit is set to 1 the pin will be an output.

Note that the 8 pin PICAXE have some pre-configured pins (e.g. pin 0 is always

an output and pin 3 is always an input). Adjusting the bits for these pins will

have no effect on the microcontroller.

Example:

let dirs = %00000011 ; switch pins 0 and 1 to outputs

let pins = %00000011 ; switch on outputs 0 and 1

��
���

		

		
		
		
		
		

		
���
����

		

���
����

		

���
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

137

137

www.picaxe.com

let dirsA / dirsB / dirsC / dirsD =

Syntax:

{LET} dirsA = value
{LET} dirsB = value
{LET} dirsC = value
{LET} dirsD = value
- Value(s) are variables/constants which operate on the data direction register.

Function:

Configure pins as inputs or outputs.

Information:

Many PICAXE microcontrollers allow pins to be configured as inputs or outputs.

In these cases it is necessary to tell the microcontroller which pins to use as

inputs and/or outputs (all are configured as inputs on first power up). There are a

number of ways of doing this:

1) Use the input/output/reverse commands.

2) Use an output command (high, pulsout etc) that automatically configures the

pin as an output.

3) Use the let dirs = statement.

When working with this statement it is conventional to use binary notation. With

binary notation pin 7 is on the left and pin 0 is on the right. If the bit is set to 0

the pin will be an input, if the bit is set to 1 the pin will be an output.

Note that some pins are fixed as inputs/outputs and so using this command will

have no effect on these pins.

Example:

let dirsB = %00000011 ‘ switch pins 0 and 1 to outputs

let pinsB = %00000011 ‘ switch on outputs 0 and 1

		
		

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

138

138

www.picaxe.com

let pins / pinsc =

For M2 and X2 parts see the next page.

Syntax:

{LET} pins = value
{LET} pinsc = value
- Value(s) are variables/constants which operate on the output port.

Function:

Set/clear all outputs on the main output port (let pins =).

Set/clear all outputs on portc (let pinsc =)

Information:

High and low commands can be used to switch individual outputs high and low.

However when working with multiple outputs it is often convenient to change all

outputs simultaneously. When working with this statement it is conventional to

use binary notation. With binary notation output7 is on the left and output0 is

on the right. If the bit is set to 0 the output will be off (low), if the bit is set to 1

the output will be on (high).

Do not confuse the input port with the output port. These are separate ports on

all except the 8 pin PICAXE. The command

let pins = pins
means ‘make the output port the same as the input port’.

Note that on devices that have input/output bi-directional pins (08 / 08M), this

command will only function on pins configured as outputs. In this case it is

necessary to configure the pins as outputs (using a let dirs = command) before

use of this command.

Example:

let pins = %10000011 ; switch outputs 7,0,1 on

pause 1000 ; wait 1 second

let pins = %00000000 ; switch all outputs off

��
���

		

��
���
���

����
���

���
		

		
���
����

		

���
����

		

���
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

139

139

www.picaxe.com

let pinsA / pinsB / pinsC / pinsD =

Syntax:

{LET} pinsA = value
{LET} pinsB = value
{LET} pinsC = value
{LET} pinsD = value
- Value(s) are variables/constants which operate on the output port.

Function:

Set/clear all outputs on the selected port.

Information:

High and low commands can be used to switch individual outputs high and low.

However when working with multiple outputs it is often convenient to change all

outputs simultaneously. When working with this statement it is conventional to

use binary notation. With binary notation output7 is on the left and output0 is

on the right. If the bit is set to 0 the output will be off (low), if the bit is set to 1

the output will be on (high).

Note that this command will only function on pins configured as outputs. In

this case it is necessary to configure the pins as outputs (using a let dirsX =

command) before use of this command.

Example:

let dirsB = %10000011 ; 7,0,1 as outputs

let pinsB = %10000011 ; switch outputs 7,0,1 on

pause 1000 ; wait 1 second

let pinsB = %00000000 ; switch all outputs off

		
		

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

140

140

www.picaxe.com

lookdown

Syntax:

LOOKDOWN target,(value0,value1...valueN),variable
- Target is a variable/constant which will be compared to Values.

- Values are variables/constants.

- Variable receives the result (if any).

Function:

Get target’s match number (0-N) into variable (if match found).

Information:

The lookdown command should be used when you have a specific value to

compare with a pre-known list of options. The target variable is compared to the

values in the bracket. If it matches the 5th item (value4) the number ‘4’ is

returned in variable. Note the values are numbered from 0 upwards (not 1

upwards). If there is no match the value of variable is left unchanged.

In this example the variable b2 will contain the value 3 if b1 contains “d” and the

value 4 if b1 contains “e”

Example:

lookdown b1,(“abcde”),b2

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

141

141

www.picaxe.com

lookup

Syntax:

LOOKUP offset,(data0,data1...dataN),variable
- Offset is a variable/constant which specifies which data# (0-N) to place in

Variable.

- Data are variables/constants.

- Variable receives the result (if any).

Function:

Lookup data specified by offset and store in variable (if in range).

Description:

The lookup command is used to load variable with different values. The value to

be loaded in the position in the lookup table defined by offset. In this example if

b0 = 0 then b1 will equal “a”, if b0 =1 then b1 will equal “b” etc. If offset exceeds

the number of entries in the lookup table the value of variable is unchanged.

Each lookup is limited to 256 entries, but each entry may be a bit, byte or word

constant or variable.

Example:

main:

lookup b0,(“abcde”),b1 ; put ASCII character into b1

inc b0 ; increment b0

if b0 < 4 then main ; loop

end

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

142

142

www.picaxe.com

low

Syntax:

LOW pin {,pin,pin...}
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin an output and switch low.

Information:

The low command switches an output off (low).

On microcontrollers with configurable input/output pins this command also

automatically configures the pin as an output.

Example:

main: high B.1 ; switch on output B.1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output B.1

pause 5000 ; wait 5 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

143

143

www.picaxe.com

low portc

Syntax:

LOW PORTC pin {,pin,pin...}
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin on portc output low.

This command is only used on older 14M and 28X/28X1 parts.

For newer M2 and X2 parts use the PORT.PIN notation directly e.g. low C.2

Information:

The high command switches a portc output off (low).

Example:

main: high portc 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low portc 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto main ‘ loop back to start

		
		
		
		
		

		
		
		

		
���
����

		

���
����

		

���
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

144

144

www.picaxe.com

nap

Syntax:

NAP period
- Period is a variable/constant which determines the duration of the reduced-

power nap (normally 0-7 but M2 parts also support 0-14).

Function:

Nap for a short period. Power consumption is

reduced, but some timing accuracy is lost. A

longer delay is possible with the sleep command.

Information:

The nap command puts the microcontroller into

low power mode for a short period of time.

When in low power mode all timers are switched

off and so the pwmout and servo commands will

cease to function (see the ‘doze’ command). The

nominal approximate period of time is given by

this table.

Due to tolerances in the microcontrollers

internal timers, this time is subject to -50 to

+100% tolerance. The external temperature

affects these tolerances and so no design that

requires an accurate time base should use this

command.

A ‘hard-reset’ will always be required during very

long naps.

Effect of increased clock speed:

The nap command uses the internal watchdog

timer which is not affected by changes in resonator clock speed.

Example:

main: high B.1 ; switch on output B.1

nap 4 ; nap for 288ms

low B.1 ; switch off output B.1

nap 7 ; nap for 2.3 s

goto main ; loop back to start

��
���

����

���
���
����

		

���
����

		

��
���
���

����
���

���
����

���
����

		

Period Time Delay

0 18ms

1 32ms

2 72ms

3 144ms

4 288ms

5 576ms

6 1.1s

7 2.3s

8 4s

9 8s

10 16s

11 32s

12 64s (1 min)

13 128s (2 mins)

14 256s (4 mins)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

145

145

www.picaxe.com

on...goto

Syntax:

ON offset GOTO address0,address1...addressN
- Offset is a variable/constant which specifies which Address# to use (0-N).

- Addresses are labels which specify where to go.

Function:

Branch to address specified by offset (if in range).

Information:

This command allows a jump to different program positions depending on the

value of the variable ‘offset’. If offset is value 0, the program flow will jump to

address0, if offset is value 1 program flow will jump to adddress1 etc.

If offset is larger than the number of addresses the whole command is ignored

and the program continues at the next line.

This command is identical in operation to branch

Example:

reset1:let b1 = 0

low B.0

low B.1

low B.2

low B.3

main: pause 1000

inc b1

if b1 > 3 then reset1

on b1 goto btn0,btn1, btn2, btn3

goto main

btn0: high B.0

goto main

btn1: high B.1

goto main

btn2: high B.2

goto main

btn3: high B.3

goto main

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

146

146

www.picaxe.com

on...gosub

Syntax:

ON offset GOSUB address0, address1, ...addressN
- Offset is a variable/constant which specifies which subprocedure to use (0-N).

- Addresses are labels which specify which subprocedure to gosub to.

Function:

gosub address specified by offset (if in range).

Information:

This command allows a conditional gosub depending on the value of the variable

‘offset’. If offset is value 0, the program flow will gosub to address0, if offset is

value 1 program flow will gosub to adddress1 etc.

If offset is larger than the number of addresses the whole command is ignored

and the program continues at the next line.

The return command of the sub procedure will return to the line after on...gosub.

This command counts as a single gosub within the compiler.

Example:

reset1:let b1 = 0

low B.0

low B.1

low B.2

low B.3

main: pause 1000

inc b1

if b1 > 3 then reset1

on b1 gosub btn0,btn1, btn2, btn3

goto main

btn0: high B.0

return

btn1: high B.1

return

btn2: high B.2

return

btn3: high B.3

return

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

147

147

www.picaxe.com

output

Syntax:

OUTPUT pin,pin, pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin an output.

Information:

This command is only required on microcontrollers with programmable input/

output pins . This command can be used to change a pin that has been

configured as an input to an output.

All pins are configured as inputs on first power-up (unless the pin is a fixed

output). Fixed pins are not affected by this command. These pins are:

08, 08M, 08M2 0 = fixed output 3 = fixed input

14M2 B.0 = fixed output C.3 = fixed input

18M2 C.3 = fixed output C.4, C.5 = fixed input

20M2, 20X2 A.0 = fixed output C.6 = fixed input

28X2, 40X2 A.4 = fixed output

Example:

main:

input B.1 ; make pin input

reverse B.1 ; make pin output

reverse B.1 ; make pin input

output B.1 ; make pin output

��
���

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

148

148

www.picaxe.com

owin

Syntax:

owin pin,mode,(variable, variable...)
- Pin is a variable/constant which specifies input pin to use.

- Mode is a variable/ constant which selects the mode.

 Each bit of ‘mode’ has a separate function:

bit 0 - reset pulse sent before data

bit 1 - reset pulse sent after data

bit 2 - bit mode (receive 1 bit rather than 8 bits (1 byte))

bit 3 - apply strong pullup after data

For convenience these predefined constants may be used:

0 ownoreset 4 ownoreset_bit

1 owresetbefore 5 owresetbefore_bit

2 owresetafter 6 owresetafter_bit

3 owresetboth 7 owresetboth_bit

- Variables(s) receives the data.

Function:

Read data (either full byte or single bit) from one-wire device connected to an

input pin, with optional reset pulses before and after the read.

This command cannot be used on the following pins due to silicon restrictions:

20X2 C.6 = fixed input

Information:

Use of one-wire parts is covered in more detail in the separate ‘One-Wire Tutorial’

datasheet.

This command is used to read data from a one-wire device.

Example:

; Read raw temperature value from DS18B20

; (this achieves a similar function to the readtemp12 command)

main:

owout C.1,%1001,($CC,$44)

; send ‘reset’ then ‘skip ROM’

; then ‘convert’ then apply ‘pullup’

pause 750 ; wait 750ms with strong pullup

owout C.1,%0001,($CC,$BE)

; send ‘reset’ then ‘skip ROM’

; then ‘read temp’ command

owin C.1,%0000,(b0,b1) ; read in result

sertxd (#w0,CR,LF) ; transmit value

goto main

		
		
		
		
		

		
		

����
����

		
����
����

		
		
		

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

149

149

www.picaxe.com

owout

Syntax:

owout pin,mode,(variable,variable...)
- Pin is a variable/constant which specifies the pin to use.

- Mode is a variable/ constant which selects the mode.

 Each bit of ‘mode’ has a separate function:

bit 0 - reset pulse sent before data

bit 1 - reset pulse sent after data

bit 2 - bit mode (send 1 bit rather than 8 bits (1 byte))

bit 3 - apply strong pullup after data

For convenience these predefined constants may be used:

0 ownoreset 4 ownoreset_bit

1 owresetbefore 5 owresetbefore_bit

2 owresetafter 6 owresetafter_bit

3 owresetboth 7 owresetboth_bit

- Variables(s) contain the data to be sent.

Function:

Write data to one-wire device connected to an input pin, with optional reset

pulses before and after the write.

Information:

Use of one-wire parts is covered in more detail in the separate ‘One-Wire Tutorial’

datasheet.

This command is used to write data to a one-wire device. Some devices, such as

the DS18B20 temperature sensor, may require a strong pullup after a byte is

written.

This command cannot be used on the following pins due to silicon restrictions:

20X2 C.6 = fixed input

Example:

; Read raw temperature value from DS18B20

; (this achieves a similar function to the readtemp12 command)

main:

owout C.1,%1001,($CC,$44)

; send ‘reset’ then ‘skip ROM’

; then ‘convert’ then apply ‘pullup’

pause 750 ; wait 750ms with strong pullup

owout C.1,%0001,($CC,$BE)

; send ‘reset’ then ‘skip ROM’

; then ‘read temp’ command

owin C.1,%0000,(b0,b1) ; read in result

sertxd (#w0,CR,LF) ; transmit value

goto main

		
		
		
		
		

		
		

����
����

		
����
����

		
		
		

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

150

150

www.picaxe.com

pause

Syntax:

PAUSE milliseconds
- Milliseconds is a variable/constant (0-65535) which specifies how many

milliseconds to pause (at 8MHz on X2 parts, 4MHz on all other parts)

Function:

Pause for some time. The duration of the pause is as accurate as the resonator

time-base, and presumes a 4MHz resonator (8MHz on X2 parts).

Information:

The pause command creates a time delay (in milliseconds). The longest time

delay possible is just over 65 seconds. To create a longer time delay (e.g. 5

minutes) use a for...next loop

for b1 = 1 to 5 ‘ 5 loops

pause 60000 ‘ wait 60 seconds

next b1

During a pause the only way to react to inputs is via an interrupt (see the setint

command for more information). Do not put long pauses within loops that are

scanning for changing input conditions.

When using time delays longer than 5 seconds it may be necessary to perform a

‘hard reset’ to download a new program to the microcontroller. See the Serial

Download section for more details.

Effect of increased clock speed:

The timebase is altered if the default frequency is altered, for instance running

4MHz parts at 8MHz will result in a pause half the expected length.

During M2 part multi task programs the accuracy of pause is reduced due to the

parallel processing. The minimum resolution is around 20ms in multi task

programs. For greater accuracy use single task mode.

Example:

main: high B.1 ; switch on output B.1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output B.1

pause 5000 ; wait 5 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

151

151

www.picaxe.com

pauseus

Syntax:

PAUSEUS microseconds
- Microseconds is a variable/constant (0-65535) which specifies how many

multiples of 10 microseconds to pause (at 8MHz on X2 parts, else 4MHz).

Function:

Pause for some time. The duration of the pause is as accurate as the resonator

time-base, and presumes a 4MHz resonator (8MHz on X2 parts).

Information:

The pauseus command creates a time delay (in multiples of 10 microseconds at

4MHz). As it takes a discrete amount of time to execute the command, small

time delays may be inaccurate due to this ‘overhead processing’ time. This

inaccuracy decreases as the delay gets longer.

Effect of increased clock speed:

The timebase is reduced to 5us at 8MHz and 2.5us at 16MHz (non-X2 parts).

Example:

main: high B.1 ; switch on output B.1

pauseus 5000 ; wait 50 000us = 50 milliseconds

low B.1 ; switch off output B.1

pauseus 5000 ; wait 50 000us = 50 milliseconds

goto main ; loop back to start

		
		
		

����
		

		
		

����
����

		
����
����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

152

152

www.picaxe.com

peek

Syntax:

PEEK location,variable,variable,WORD wordvariable...
- Location is a variable/constant specifying a register address.

- Variable is a byte variable where the data is returned. To use a word variable

the keyword WORD must be used before the wordvariable name)

Function:

Read data from the microcontroller RAM registers. This allows use of additional

storage variables not defined by the bxx variables.

Information:

For M2 and X2 parts see the information on the following page.

For non M2/X2 parts:

The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the

microcontrollers spare ‘storage variable’ memory. This allows the general purpose

variables (b0, b1 etc.) to be re-used in calculations.

Addresses $50 to $7E are general purpose registers that can be used freely.

Addresses $C0 to $EF can also be used by PICAXE-18X.

Addresses $C0 to $FF can also be used by PICAXE-28X, 40X

Addresses $C0 to $EF can also be used by PICAXE-28X1, 40X1

The second function of the peek command is for experienced users to study the

internal microcontroller SFR (special function registers).

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)

which determine how the microcontroller operates. Avoid using these addresses

unless you know what you are doing! The command uses the microcontroller

FSR register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for

use with the PICAXE bootstrap interpreter. Poking these registers will produce

unexpected results and could cause the interpreter to crash.

When word variables are used (with the keyword WORD) the two bytes of the

word are saved/retrieved in a little endian manner (ie low byte at address, high

byte at address + 1)

Example:

peek 80,b1 ; put value of register 80 into variable b1

peek 80, word w1

		
���

����

��
���
���

����
���

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

153

153

www.picaxe.com

For M2 parts:

The function of the poke/peek commands is amended on M2 parts.

The M2 parts have up to 512 bytes of user RAM.

The peek and poke commands are used to read and write to all 256 bytes of the

user RAM. However the lower 28 bytes (addresses 0 to 27) also correspond to the

variables b0 to b27. Therefore these lower bytes can be accessed in two ways, via

the bxx variable name or via the peek/poke command. The higher variables can

only be accessed via the peek/poke commands.

See the peeksfr and pokesfr commands for details on how to access the internal

microcontroller SFR (special function registers).

Note that on the 18M2 part bytes 128-255 are reserved during parallel multi-tasking

mode (they are freely available in single task mode). This is a restriction of the limited

available RAM on this particular part and does not apply to the 14M2/20M2 parts.

Example:

peek 80,b1 ; put value of register 80 into variable b1

For X2 parts:

The function of the poke/peek commands is amended on X2 parts.

The 20X2 parts have 128 bytes of user RAM (+128 more in scratchpad)

The 28X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)

The 40X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)

The peek and poke commands are used to read and write to all 256 bytes of the

user RAM. However the lower 56 bytes (addresses 0 to 55) also correspond to the

variables b0 to b55. Therefore these lower bytes can be accessed in two ways, via

the bxx variable name or via the peek/poke command. The higher variables can

only be accessed via the peek/poke commands.

See the peeksfr and pokesfr commands for details on how to access the internal

microcontroller SFR (special function registers).

Example:

peek 80,b1 ; put value of register 80 into variable b1

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

154

154

www.picaxe.com

peeksfr

Syntax:

PEEKSFR location,variable,variable,...
- Location is a variable/constant specifying a register address. Valid values are 0

to 255 (not all implemented, see below).

- Variable is a byte variable where the data is returned.

Function:

Read data from the microcontroller special function registers. This allows

experienced users to read the on-board peripheral microcontroller settings. This

command is for M2 and X2 parts only, for other parts see the peek command.

Information:

The peeksfr command is for experienced users to study the internal

microcontroller SFR (special function registers).

Only SFRs associated with peripherals (e.g. ADC or timers) may be accessed.

Peeking or poking SFRs associated with PICAXE program operation (e.g. FSR,

EEPROM or TABLE registers) will cause the PICAXE chip to immediately reset.

X2 parts
As location can only take the value 0-255 on X2 locations taken from the

Microchip datasheet drop the initial ‘F’ from the hexadecimal value

e.g. BAUDCON FB8h becomes $B8

M2 parts
As location can only take the value 0-255 the value for M2 locations taken from

the Microchip datasheet are created as follows:

Bit 7-5 Memory Bank $00-$07

Bit4-0 Addresses $0C to $1F on this bank

($00-$0B are invalid and cause instant reset)

e.g. BAUDCON, address 01Fh on bank 3, becomes %011 11111

Example:

peeksfr $9B,b1 ; Read OSCTUNE into variable b1

		
		

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

155

155

www.picaxe.com

play

Syntax:

PLAY pin, tune (all non-8 pin parts)
PLAY pin, tune, LED_mask (M2 parts only)
PLAY tune, LED_option (8 pin devices only)
- pin is a variable/constant which specifies the i/o pin to use (not available on

8 pin PICAXE parts, which are fixed to using output 2).

- Tune is a variable/constant (0 - 3) which specifies which tune to play

0 - Happy Birthday

1 - Jingle Bells

2 - Silent Night

3 - Rudolph the Red Nosed Reindeer

- LED_mask (M2 parts only) is a variable/constant which specifies if other

PICAXE outputs (on the same port as the piezo) flash at the same time as the

tune is being played. For example use %00000011 to flash output 0 and 1.

- LED_option (08M/08M2 only) is a variable/constant (0 -3) which specifies if

other 8pin PICAXE outputs flash at the same time as the tune is being played.

0 - No outputs

1 - Output 0 flashes on and off

2 - Output 4 flashes on and off

3 - Output 0 and 4 flash alternately

Function:

Play an embedded tune out of the PICAXE output pin.

Description:

PICAXE chips can play musical tones. The PICAXE is supplied with up to 4 pre-

programmed internal tunes, which can be output via the play command. As these

tunes are already included within the PICAXE bootstrap code, they use very little

user program memory. To generate your own tunes use the ‘tune’ command,

which can play any “mobile phone” style RTTTL tune.

See the Tune command for suitable piezo / speaker circuits.

The PICAXE-08M has 4 internal tunes, other parts have less. However on these

other parts the ‘missing’ tunes (Silent Night / Rudolph etc.) are automatically

downloaded via the compiler as the appropriate ‘tune’ command. Therefore the

play command will always work on all 4 tunes.

Effect of increased clock speed:

Parts automatically drop to 4MHz to process this command.

Example:

; (8 pin parts only)

play 3,1 ; rudolf red nosed reindeer with output 0 flashing

; (all other parts)

play 2,1 ; jingle bells on output pin 2

; (18M2)

play B.3, 1, %00000011 ; output B.3 with B.0 and B.1 flashing

		
���

����

		
		

����
����

		
����
����

		
		

���
����

		

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

156

156

www.picaxe.com

poke

Syntax:

POKE location,data,data,WORD wordvariable...
- Location is a variable/constant specifying a register address.

- Data is a variable/constant which provides the data byte to be written. To use

a word variable the keyword WORD must be used before the wordvariable)

Function:

Write data into FSR location. This allows use of registers not defined by b0, b1

etc.

Information:

For M2 and X2 parts see the information on the following page.

For non M2 / X2 parts:
The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the

microcontrollers spare ‘storage variable’ memory. This allows the general purpose

variables (b0,b1 etc) to be re-used in calculations. Remember that to save a word

variable two separate poke/peek commands will be required - one for each of the

two bytes that form the word.

Addresses $50 to $7E are general purpose registers that can be used freely.

Addresses $C0 to $EF can also be used by PICAXE-18X.

Addresses $C0 to $FF can also be used by PICAXE-28X, 40X

Addresses $C0 to $EF can also be used by PICAXE-28X1, 40X1

The second function of the poke command is for experienced users to write

values to the internal microcontroller SFR (special function registers)

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)

which determine how the microcontroller operates. Avoid using these addresses

unless you know what you are doing! The command uses the microcontroller

FSR register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for

use with the PICAXE bootstrap interpreter. Poking these registers will produce

unexpected results and could cause the interpreter to crash.

When word variables are used (with the keyword WORD) the two bytes of the

word are saved/retrieved in a little endian manner (ie low byte at address, high

byte at address + 1)

Example:

poke 80,b1 ‘ save value of b1 in register 80

poke 80, word w1

		
���

����

��
���
���

����
���

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

157

157

www.picaxe.com

For M2 parts:

The function of the poke/peek commands is amended on M2 parts.

The M2 parts have up to 512 bytes of user RAM.

The peek and poke commands are used to read and write to all 256 bytes of the

user RAM. However the lower 28 bytes (addresses 0 to 27) also correspond to the

variables b0 to b27. Therefore these lower bytes can be accessed in three ways,

via the bxx variable name or via the peek/poke command or via the @bptr

variable. The higher variables can be accessed via the peek/poke commands or

@bptr variable.

See the peeksfr and pokesfr commands for details on how to access the internal

microcontroller SFR (special function registers).

Note that on the 18M2 part bytes 128-255 are reserved during parallel multi-tasking

mode (they are freely available in single task mode). This is a restriction of the limited

available RAM on this particular part and does not apply to the 14M2/20M2 parts.

Example:

poke 80,b1 ; poke value of variable b1 into register 80

For X2 parts:

The function of the poke/peek commands is amended on X2 parts.

The 20X2 parts have 128 bytes of user RAM (+128 more in scratchpad)

The 28X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)

The 40X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)

The peek and poke commands are used to read and write to all 256 bytes of the

user RAM. However the lower 56 bytes (addresses 0 to 55) also correspond to the

variables b0 to b55. Therefore these lower bytes can be accessed in three ways,

via the bxx variable name or via the peek/poke command or via the @bptr

variable. The higher variables can be accessed via the peek/poke commands or

@bptr variable.

See the peeksfr and pokesfr commands for details on how to access the internal

microcontroller SFR (special function registers).

Example:

poke 80,b1 ; poke value of variable b1 into register 80

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

158

158

www.picaxe.com

pokesfr

Syntax:

POKESFR location,data,data,...
- Location is a variable/constant specifying a register address. Valid values are 0

to 255 (not all implemented, see below).

- Data is a variable/constant which provides the data byte to be written.

Function:

Write data to the microcontroller special function registers. This allows

experienced users to adjust the on-board peripheral microcontroller settings. This

command is for M2 and X2 parts only, for other parts see the poke command.

Information:

The pokesfr command is for experienced users to adjust the internal

microcontroller SFR (special function registers).

Only SFRs associated with peripherals (e.g. ADC or timers) may be accessed.

Peeking or poking SFRs associated with PICAXE program operation (e.g. FSR,

EEPROM or TABLE registers) will cause the PICAXE chip to immediately reset.

X2 parts
As location can only take the value 0-255 on X2 locations taken from the

Microchip datasheet drop the initial ‘F’ from the hexadecimal value

e.g. BAUDCON FB8h becomes $B8

M2 parts
As location can only take the value 0-255 the value for M2 locations taken from

the Microchip datasheet are created as follows:

Bit 7-5 Memory Bank $00-$07

Bit4-0 Addresses $0C to $1F on this bank

($00-$0B are invalid and cause instant reset)

e.g. BAUDCON, address 01Fh on bank 3, becomes %011 11111

Example:

pokesfr $9B,b1 ; put value of variable b1 into OSCTUNE

		
		

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

159

159

www.picaxe.com

		
		

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

pullup

Syntax:

PULLUP mask
PULLUP OFF (= PULLUP 0)
PULLUP ON (= PULLUP 255)
- mask is a variable/constant specifying a bit mask of the target port.

Function:

Enable or disable the internal weak pull-up resistors on the target device.

Information:

The pullup command can enable/disable the internal pull-up resistors on some

input pins. Not all pins have internal pull-up resistors. When a pin is configured

as an output the pull-up is automatically disconnected.

An internal pull-up allows the hardware to reliably use, for instance, a switch

between the pin and ground without an external resistor.

‘Mask’ function varies with the PICAXE chip in use. It can contain up to 16

individual bits, bit0 to bit15. Not all pins have pullup functionality due to the

internal construction of the microcontroller.

08M2 bit0-bit4 = C.0 to C.4

14M2 bit0-bit7 = B.0 to B.7 bit8-bit15 = C.0 to C.7

18M2 bit0-bit7 = B.0 to B.7

20M2 bit0-bit7 = B.0 to B.7 bit8-bit15 = C.0 to C.7

20X2 bit0-bit7 = C.0, C.6, C.7, B.0, B.1 B.5, B.6, B.7

28X2/40X2 bit0-bit7 = B.0 to B.7

28X2-5V/40X2-5V On = all PORTB

28X2-3V/40X2-3V bit0-bit7 = B.0 to B.7

On older 28X2-5V / 40X2-5V parts the pull-ups are on portB only, and cannot be

individually masked. Therefore just use ‘on’ or ‘off’ to enable/disable all 8 pullups

at the same time.

Examples:

pullup on ;enable pullups on 28X2-5V

pullup %11110000 ;enable pullups on portB4-7 on 28X2

pullup %00000111 ;enable pullups on portC on 20X2

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

160

160

www.picaxe.com

pulsin

Syntax:

PULSIN pin, state, wordvariable
- Pin is a variable/constant which specifies the i/o pin to use.

- State is a variable/constant (0 or 1) which specifies which edge must occur

before beginning the measurement in 10us units (at 4MHz resonator).

- Wordvariable receives the result (1-65535). If timeout occurs (0.65536s) the

result will be 0.

Function:

Measure the length of an input pulse.

Information:

The pulsin command measures the length of a pulse. In no pulse occurs in the

timeout period, the result will be 0. If state = 1 then a low to high transition starts

the timing, if state = 0 a high to low transition starts the timing.

Use the count command to count the number of pulses with a specified time

period.

It is normal to use a word variable with this command.

Effect of Increased Clock Speed:

4MHz 10us unit 0.65536s timeout

8MHz 5us unit 0.32768s timeout

16MHz 2.5us unit 0.16384s timeout

32MHz 1.25us unit 0.08192s timeout

64MHz 0.625us unit 0.04096s timeout

Example:

pulsin C.3,1,w1 ; record the length of a pulse on C.3 into w1

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

161

161

www.picaxe.com

pulsout

Syntax:

PULSOUT pin,time
- Pin is a variable/constant which specifies the i/o pin to use.

- Time is a variable/constant which specifies the period (0-65535) in 10us units

(at 4MHz resonator).

Function:

Output a timed pulse by inverting a pin for some time.

Information:

The pulsout command generates a pulse of length time. If the output is initially

low, the pulse will be high, and vice versa. This command automatically

configures the pin as an output, but for reliable operation you should always

ensure this pin is an output before using the command.

Effect of Increased Clock Speed:

4MHz 10us unit

8MHz 5us unit

16MHz 2.5us unit

32MHz 1.25us unit

64MHz 0.625us unit

Example:

main:

pulsout B.1,150 ; send a 1.50ms pulse out of pin B.1

pause 20 ; pause 20 ms

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

162

162

www.picaxe.com

put

Syntax:

PUT location,data,data,WORD wordvariable...
- Location is a variable/constant specifying a scratchpad address. Valid values are

0 to 127 for X1 parts

0 to 127 for 20X2 parts

0 to 1023 for other X2 parts.

- Data is a variable/constant which provides the data byte to be written. To use a

word variable the keyword WORD must be used before the wordvariable.

Function:

Write data into scratchpad location.

Information:

The function of the put/get commands is store temporary byte data in the

microcontrollers scratchpad memory. This allows the general purpose variables

(b0, b1, etc.) to be re-used in calculations.

Put and get have no effect on the scratchpad pointer and so the address next used

by the indirect pointer (ptr) will not change during these commands.

When word variables are used (with the keyword WORD) the two bytes of the

word are saved/retrieved in a little endian manner (ie low byte at address, high byte

at address + 1)

Example:

put 1,b1 ; save value of b1 in register 1

put 1, word w1

		
		
		
		
		

		
		
		

		
		

����
����

		
����
����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

163

163

www.picaxe.com

pwm

Syntax:

PWM pin,duty,cycles
- Pin is a variable/constant which specifies the i/o pin to use.

- Duty is a variable/constant (0-255) which specifies analog level.

- Cycles is a variable/constant (0-255) which specifies number of cycles. Each

cycle takes about 5ms at 4MHz clock frequency.

Function:

Output pwm then return pin to input.

Information:

This command is historical and hence rarely used. For pwm control of motors etc.

the pwmout command is recommended instead.

This pwm command is used to provide ‘bursts’ of PWM output to generate a

pseudo analogue output on the PICAXE pins. This is achieved with a resistor

connected to a capacitor connected to ground; the resistor-capacitor junction

being the analog output. PWM should be executed periodically to update/refresh

the analog voltage.

Example:

main:

pwm C.4,150,20 ; send 20 pwm bursts out of pin 4

pause 20 ; pause 20 ms

goto main ; loop back to start

��
���

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

164

164

www.picaxe.com

pwmduty

Syntax:

PWMDUTY pin,duty cycles
- Pin is a constant which specifies the i/o pin to use. Note that the

pwmout pin is not always a default output pin - see the pinout diagram.

- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’)

Function:

Alter the duty cycle after a pwmout command has been issued.

Information:

On some parts the pwmduty command can be used to alter the pwm duty cycle

without resetting the internal timer (as occurs with a pwmout command). A

pwmout command must be issued on the appropriate pin before this command

will function.

Information:

See the pwmout command for more details.

Example:

init:
pwmout C.2,150,100 ; start pwm

main:
pwmduty C.2,150 ; set pwm duty
pause 1000 ; pause 1 s
pwmduty C.2,50 ; set pwm duty
pause 1000 ; pause 1 s
goto main ; loop back to start

		
		

����

		
		
		

����
		

		
		

����
����

		
����
����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

165

165

www.picaxe.com

pwmout

Syntax:

PWMOUT pin, period, duty cycles
PWMOUT PWMDIV4,pin, period, duty cycles
PWMOUT PWMDIV16, pin, period, duty cycles
PWMOUT PWMDIV64, pin, period, duty cycles
PWMOUT pin, OFF
- Pin is a variable/constant which specifies the i/o pin to use. Note that the

pwmout pin is not always a default output pin - see the pinout diagram.

- Period is a variable/constant (0-255) which sets the PWM period

(period is the length of 1 on/off cycle i.e. the total mark:space time).

- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’)

The PWMDIV keyword is used to divide the frequency by 4, 16 or 64. This slows

down the PWM.

Function:

Generate a continuous pwm output using the microcontroller’s internal pwm

module. also see the HPWM command, which can produce the equivalent of

pwmout on different output pins.

Information:

This command is different to most other BASIC commands in that the pwmout

runs continuously (in the background) until another pwmout command is sent.

Therefore it can be used, for instance, to continuously drive a motor at varying

speeds. To stop pwmout issue a ‘pwmout pin, off’ (=pwmout pin,0,0) command.

The PWM period = (period + 1) x 4 x resonator speed

(resonator speed for 4MHz = 1/4000000)

The PWM duty cycle = (duty) x resonator speed

Note that the period and duty values are linked by the above equations. If you wish to

maintain a 50:50 mark-space ratio whilst increasing the period, you must also increase

the duty cycle value appropriately. A change in resonator will change the formula.

NB: If you wish to know the frequency, PWM frequency = 1 / (the PWM period)

In many cases you may want to use these equations to setup a duty cycle at a

known frequency = e.g. 50% at 10 kHz. The Programming Editor software

contains a wizard to automatically calculate the period and duty cycle values for

you in this situation.

		
���

����

		
		
		

����
���

		
���
����
����

���
����
����

���
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

166

166

www.picaxe.com

Select the PICAXE>Wizards>pwmout menu to use this wizard.

As the pwmout command uses the internal pwm module of the microcontroller

there are certain restrictions to its use:

1) The command only works on certain pins.

2) Duty cycle is a 10 bit value (0 to 1023). The maximum duty cycle value must

not be set greater than 4x the period, as the mark ‘on time’ would then be

longer than the total PWM period (see equations above)! Setting above this

value will cause erratic behaviour.

3) The pwmout module uses a single timer for both the C.1/C.2 pins on 28/40

pin devices. Therefore when using PWMOUT on both these pins the period

will be the same for both pins (however different duty cycles are possible).

4) The servo command cannot generally be used at the same time as the

pwmout command as they both use the same timer (but see * below).

5) pwmout stops during nap, sleep, or after an end command

6) pwmout 1 can be used at the same time as hpwm (see 3 above)

7) pwmout 2 cannot be used as the same time as hpwm

8) pwmout is dependant on the clock frequency. On some X1/X2 timing

sensitive commands, such as readtemp, the command automatically drops to

the internal 4MHz resonator to ensure timing accuracy. This will cause the

background pwm to change, so pwm should be stopped during these

commands.

* On older PICAXE parts the same internal timer (timer2) is used for both

pwmout and servo, so these commands cannot be used at the same time.

However some newer parts have additional dedicated internal timers that allow

pwmout and servo to work together. This applies to these pwmout channels:

14M2 B.2, B.4 (C.0, C.2 share the servo timer)

18M2 B.3, B.6

20M2 B.1, C.2 (C.3, C.5 share the servo timer)

28X2 B.0, B.5 (C.1, C.2 share the servo timer)

Note that on X2 parts (only), use of any ‘pwmout’ command will reset all the

other active pwm pins to pwmdiv1. To keep different pins operating at pwmdiv4

or pwmdiv16 reissue a

PWMOUT PWMDIV4 , PIN

 command for each of the other pins after the new pwmout command.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

167

167

www.picaxe.com

To stop pwmout on a pin it is necessary to issue a ‘pwmout pin, off’ command.

Note that this stops all pwm channels sharing that timer (e.g. both C.1 and C.2

will stop together on a 28X2 part). To just stop one channel use ‘pwmduty pin, 0’

The pwmout command initialises the pin for pwm operation and starts the

internal timers. As each pwmout command always resets the internal timer, the

pwmduty command is recommended when rapidly changing the dut (i.e. use an

initial pwmout command and then use pwmduty commands after that).

When driving a FET, a pull-down

resistor between the PICAXE pin

and 0V is essential. The purpose of

the pull-down resistor is to hold the

FET driver in the correct ‘low’ state

whilst the PICAXE chip initialises

upon power up. During this short

initialisation period the pwmout

pins are not actively driven (ie they

‘float’) and so the resistor is

essential to hold the FET in the off

condition.

Example:

init:

pwmout C.2,150,150 ; set pwm duty

main:

pwmduty C.2,150 ; set pwm duty

pause 1000 ; pause 1 s

pwmduty C.2,50 ; set pwm duty

pause 1000 ; pause 1 s

goto main ; loop back to start

��

8�&

���

��-���

��.����

��(

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

168

168

www.picaxe.com

random

Syntax:

RANDOM wordvariable
- Wordvariable is both the workspace and the result. As random generates a

pseudo-random sequence it is advised to repeatedly call it within a loop. A

word variable must be used, byte variables will not operate correctly.

Function:

Generate next pseudo-random number in a wordvariable.

Description:

The random command generates a pseudo-random sequence of numbers

between 0 and 65535. All microcontrollers must perform mathematics to

generate random numbers, and so the sequence can never be truly random. On

computers a changing quantity (such as the date/time) is used as the start of the

calculation, so that each random command is different. The PICAXE does not

contain such date functionality, and so the sequence it generates will always be

identical unless the value of the word variable is set to a different value before the

random command is used.

When used with M2, X1, X2 parts you can set the timer running and then use the

timer variable to ‘seed’ the random command. This will give much better results:

let w0 = timer ; seed w0 with timer value

random w0 ; put random value into w0

When used with M2 parts you can set the timer running and then use the timer

variable to ‘seed’ the random command. This will give much better results:

let w0 = time ; seed w0 with time value

random w0 ; put random value into w0

Another common way to overcome this issue (can be used on all parts) is to

repeatedly call the random command within a loop, e.g. whilst waiting for a

switch push. As the number of loops will vary between switch pushes, the output

is much more random.

If you only require a byte variable (0-255), still use the word variable (e.g. w0) in

the command. As w0 is made up of b0 and b1, you can use either of these two

bytes as your desired random byte variable.

Example:

main: ; note random is repeatedly called

random w0 ; within the loop

if pinC.1 =1 then

 let pinsB = b1 ; put random byte value on output pins

 pause 100 ; wait 0.1s

end if

goto main

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

169

169

www.picaxe.com

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

read

Syntax:

READ location,variable,variable, WORD wordvariable
- Location is a variable/constant specifying a byte-wise address (0-255).

- Variable receives the data byte read.To use a word variable the keyword WORD

must be used before the wordvariable)

Function:

Read EEPROM data memory byte content into variable.

Information:

The read command allows byte data to be read from the microcontrollers data

memory. The contents of this memory is not lost when the power is removed.

However the data is updated (with the EEPROM command specified data) upon

a new download. To save the data during a program use the write command.

The read command is byte wide, so to read a word variable two separate byte read

commands will be required, one for each of the two bytes that makes the word

(e.g. for w0, read both b0 and b1).

With the PICAXE-08, 08M, 08M2, 14M, 18, 18M and 18M2 the data memory is

shared with program memory. See the EEPROM command for more details.

When word variables are used (with the keyword WORD) the two bytes of the

word are saved/retrieved in a little endian manner (ie low byte at address, high

byte at address + 1)

Example:

main:

for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value at b0 into b1

serout B.7,N2400,(b1) ; transmit value to serial LCD

next b0 ; next loop

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

170

170

www.picaxe.com

readadc

Syntax:

READADC channel,variable
- channel is a variable/constant specifying the ADC pin

- Variable receives the data byte read.

Function:

Read the ADC channel (8 bit resolution) contents into variable.

On X2 parts the adcsetup command must be used to configure the pin as an

analogue input. On all other parts configuration is automatic.

Information:

The readadc command is used to read the analogue value from the

microcontroller input pins. Note that not all inputs have internal ADC

functionality - check the pinout diagrams for the PICAXE chip you are using.

Example:

main:

 readadc C.1,b1 ; read value into b1

 if b1 > 50 then flsh ; jump to flsh if b1 > 50

 goto main ; else loop back to start

flsh:

high B.1 ; switch on output B.1

pause 5000 ; wait 5 seconds

low B.1 ; switch off output B.1

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

171

171

www.picaxe.com

readadc10

Syntax:

READADC10 channel,wordvariable
- channel is a variable/constant specifying the input pin

- wordvariable receives the data word read.

Function:

Read the ADC channel (10 bit resolution) contents into wordvariable.

On X2 parts the adcsetup command must be used to configure the pin as an

analogue input. On all other parts configuration is automatic.

On X2 parts you must use the ADC channel, not the pin number, in the readadc

command (e.g. readadc10 0,w1 NOT readadc10 A.0, w1)

Information:

The readadc10 command is used to read the analogue value from

microcontrollers with 10-bit capability. Note that not all inputs have internal

ADC functionality - check the table under ‘readadc’ command for the PICAXE

chip you are using.

As the result is 10 bit a word variable must be used - for a byte value use the

readadc command instead.

Users of old AXE026 Serial Cable (does not apply to AXE027 USB Cable):

When using the debug command to output 10 bit numbers, the electrical

connection to the computer via the serial download cable may slightly affect the

ADC values. In this case it is recommended that the ‘enhanced’ interface circuit is

used on a serial connection. The Schottky diode within this circuit reduces this

issue.

Example:

main:

 readadc10 C.1,w1 ; read value into b1

 debug ; transmit to computer

 pause 200 ; short delay

 goto main ; loop back to start

		
���

����

		
		
		

����
���

		
���
����
����

���
����
����

���
����

B
B

B
B

B 8����'

 ����*�%5!
 ����*��&
����(

��(

�1%7��7���

�$�

�6$�

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

172

172

www.picaxe.com

readdac

Syntax:

READDAC variable
- variable is a byte variable to receive the DAC value

Function:

Read the DAC value into variable.

Information:

The readdac command reads the current DAC level, which must have been

already setup via dacsetup and daclevel commands. It can be considered as

‘readadc on the DAC voltage level’.

Example:

main:

readdac b1 ; read DAC level into b1

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

173

173

www.picaxe.com

readdac10

Syntax:

READDAC10 wordvariable
- variable is a word variable to receive the DAC value

Function:

Read the DAC value into variable.

Information:

The readdac command reads the current DAC level, which must have been

already setup via dacsetup and daclevel commands. It can be considered as

‘readadc10 on the DAC voltage level’.

Example:

main:

readdac10 w1 ; read DAC level into w1

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

174

174

www.picaxe.com

		
		
		

		
		
		

����
���

		
���
����
����

���
����
����

		
����

		
����
����

readi2c

This command is deprecated, please consider using the hi2cin command instead.

Syntax:

READI2C (variable,...)
READI2C location,(variable,...)
- Location is a optional variable/constant specifying a byte or word address.

- Variable(s) receives the data byte(s) read.

Function:

The readi2c (i2cread also accepted by the compiler) command read i2c location

contents into variable(s).

Information:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to read byte data from an i2c device. Location defines the

start address of the data read, although it is also possible to read more than one

byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the i2cslave command. An

i2cslave command must have been issued before this command is used.

If the i2c hardware is incorrectly configured, or the wrong i2cslave data has been

used, the value 255 ($FF) will be loaded into each variable.

Example:

; Example of how to use DS1307 Time Clock

; Note the data is sent/received in BCD format.

; set DS1307 slave address

i2cslave %11010000, i2cslow, i2cbyte

; read time and date and debug display

main:

readi2c 0,(b0,b1,b2,b3,b4,b5,b6,b7)

debug

pause 2000

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

175

175

www.picaxe.com

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

readinternaltemp

Syntax:

READINTERNALTEMP voltage, offset, variable
READINTERNALTEMP voltage, - offset, variable
- Voltage is a constant that indicates the power supply voltage. Options are:

IT_5V0 5V supply

IT_4V5 4.5V supply

IT_4V0 4V supply

IT_3V5 3.5V supply

IT_3V3 3.3V supply

IT_3V0 3V supply

IT_RAW_H Raw word reading (high setting, above 4V only)

IT_RAW_L Raw word reading (low setting, any voltage)

- Offset is an optional correction factor, defaults to 0

- Variable receives the temperature data.

Function:

The readinternaltemp command reads the analogue voltage drop across 2 (low)

or 4 (high) internal diodes. This gives a very approximate temperature indicator.

Information:

This command is used to provide an indicator of the internal temperature of the

chip. It is designed to be used as a cooling failure warning threshold device, not

an accurate temperature sensor! For accuracy use a DS18B20 sensor and the

readtemp command instead.

Internally an ADC reading is measured across two or four diodes that are linked

to the power supply. As temperature changes the ADC reading will also vary. As

the ADC reference is the supply voltage the reading will also change with a

change in supply (e.g. as a battery runs down).

When IT_RAW_H or IT_RAW_L are used, the raw reading is returned in a word

variable. Offset is ignored in these cases and so should be set to 0.

When the other settings are used the PICAXE attempts to mathematically change

the value into an approximate reading in degrees Celsius. If desired an ‘offset’ can

be added or subtracted from the raw reading before this conversion occurs to try

to improve accuracy.

Kindly note this system can never be an accurate sensor and should only be used

as an indicator of extreme temperature only. Thresholds and offsets will vary from

part to part. For accuracy use an external DS18B20 instead!

Example:

main:

readinternaltemp IT_5V0,0,b1

debug

pause 500

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

176

176

www.picaxe.com

Advanced information:

The mathematical equations used to attempt to convert the raw values into

degrees Celsius are:

5V0 RAW_H +/- K -508 * 14 / 13 + 5

4V5 RAW_H +/- K -450 * 14 / 15 + 5

4V0 RAW_H +/- K -378 * 14 / 18 + 5

3V5 RAW_L +/- K -668 * 14 / 10 + 5

3V3 RAW_L +/- K -647 * 14 / 10 + 5

3V0 RAW_L +/- K -609 * 14 / 10 + 5

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

177

177

www.picaxe.com

readfirmware

Syntax:

READFIRMWARE variable
- variable is a byte variable to receive the revision value

Function:

Read the PICAXE bootstrap firmware revision value into variable.

Information:

The readfirmware command retrieves the PICAXE bootstrap firmware version and

loads it into a variable.

Do not confuse the revision (user program) with the firmware version (PICAXE

bootstrap version).

Example:

main:

readfirmware b1 ; read firmware version into b1

		
		
		

		
		
		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

178

178

www.picaxe.com

readmem

This command is deprecated.

Syntax:

READMEM location,data
- Location is a variable/constant specifying a byte-wise address (0-255).

- Data is a variable into which the data is read.

Function:

Read FLASH program memory byte data into variable.

Information:

The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the

readmem command provides an additional 256 bytes storage in a second data

memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external

EEPROM can be used.

The readmem command is byte wide, so to read a word variable two separate

byte read commands will be required, one for each of the two bytes that makes

the word (e.g. for w0, read both b0 and b1).

Example:

main: for b0 = 0 to 255 ; start a loop

readmem b0,b1 ; read value into b1

serout 7,T2400,(b1) ; transmit value to serial LCD

next b0 ; next loop

		
		
		
		
		

		
		
		

���
		
		
		

		
		
		

		
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

179

179

www.picaxe.com

readtable

Syntax:

readtable location,variable
- location is a variable/constant specifying the address

- variable receives the byte value stored at the table location

Function:

Read the value from an embedded lookup table.

Information:

Some PICAXE chips enable lookup data (e.g. LCD messages) to be embedded in

a table within the program (via the table command). This is a very efficient way

of storing data. See the ‘table’ command for more details.

Blocks of data may also be transferred to RAM via the tablecopy command.

Example:

TABLE 0,(“Hello World”) ; save values in table

main:

for b0 = 0 to 10 ; start a loop

 readtable b0,b1 ; read value from table

 serout B.7,N2400,(b1) ; transmit to serial LCD module

next b0 ; next character

		
		

����
����

		
����
����

		
		
		

		
		
		

����
		

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

180

180

www.picaxe.com

readoutputs

Syntax:

READOUTPUTS variable
- variable is a byte variable to receive the output pins values

Function:

Read the output pins value into variable.

Information:

The current state of the output pins can be read into a variable using the

readoutputs command. Note that this is not the same as ‘let var = pins’, as this let

command reads the status of the input (not output) pins.

This command is not normally used with M2, X1 or X2 parts as the outputs can

be read directly with ‘let var = outpinsX’

Example:

main:

readoutputs b1 ; read outputs value into b1

		
���

����

��
���
���

����
���

���
���
����

		

���
����

		

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

181

181

www.picaxe.com

		
		
		

		
		
		
		
		

		
		

����
		

		
����

		

		
		

readportc

Syntax:

READPORTC variable
- variable is a byte variable to receive the portc values

Function:

Read the portc value into variable.

Information:

The current state of the portc pins on the 40X1 part can be read into a variable

using the readportc command. This command is not required on other parts as

you can just use the command ‘let var = pinsC’

Example:

main:

readportc b1 ; read value into b1

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

182

182

www.picaxe.com

readrevision

Syntax:

READREVISION variable
- variable is a byte variable to receive the revision value

Function:

Read the program slot revision value into variable.

Information:

Using the #revision directive it is possible to embed a revision number of the user

code into the downloaded program. The readrevision command retrieves this

value and loads it into a variable.

The revision value is also used by the booti2c command. Do not confuse the

revision (user program) with the firmware version (PICAXE bootstrap version).

Example:

main:

readrevision b1 ; read revision into b1

		
		
		

		
		
		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

183

183

www.picaxe.com

		
		
		

		
		
		
		
		

		
		
		

����

		
		

����

		
		

readsilicon

Syntax:

READSILICON variable
- variable is a byte variable to receive the siliconvalue

Function:

Read the siliconrevision of an X2 part into variable.

Bits 7 - 5 PICAXE Type

000 reserved for future use

001 PICAXE-20X2 (PIC18F14K22)

010 PICAXE-28X2-5V (PIC18F2520)

011 PICAXE-40X2-5V (PIC18F4520)

100 PICAXE-28X2 (PIC18F25K22)

101 PICAXE-40X2 (PIC18F45K22)

110 PICAXE-28X2-3V (PIC18F25K20)

111 PICAXE-40X2-3V (PIC18F45K20)

Bits 4 - 0

Microchip Silicon Die Version

Information:

The readsilsicon command retrieves information about the silicon dies inside the

microcontroller and loads it into a variable. Do not confuse with the revision

(user program) or the firmware version (PICAXE bootstrap version).

Example:

main:

readsilicon b1 ; read silicon into b1

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

184

184

www.picaxe.com

readtemp

Syntax:

READTEMP pin,variable
- Pin is the input pin.

- Variable receives the data byte read.

Function:

Read temperature from a DS18B20 digital temperature sensor and store in

variable. The conversion takes up to 750ms. Readtemp carries out a full 12 bit

conversion and then rounds the result to the nearest full degree Celsius (byte

value). For the full 12 bit value use the readtemp12 command.

Information:

The temperature is read back in whole degree steps, and the sensor operates from

-55 to + 125 degrees Celsius. Note that bit 7 is 0 for positive temperature values

and 1 for negative values (ie negative values will appear as 128 + numeric value).

Note the readtemp command does not work with the older DS1820 or DS18S20

as they have a different internal resolution. This command is not designed to be

used with parasitically powered DS18B20 sensors, the 5V pin of the sensor must

always be connected.

This command cannot be used on the following pins due to silicon restrictions:

08, 08M, 08M2 C.3,C. 5 = fixed input, C.0 = fixed output

14M, 14M2 C.3 = fixed input, B.0 = fixed output

18M2 C.4, C.5 = fixed input

20M,20M2, 20X2 C.6 = fixed input

Effect of increased clock speed:

This command only functions at 4MHz. M2, X1 and X2 parts automatically use

the internal 4MHz resonator for this command.

Example:

main:

readtemp C.1,b1 ; read value into b1

if b1 > 127 then neg ; test for negative

serout B.7,N2400,(#b1) ; transmit value to serial LCD

goto loop

neg:

let b1 = b1 - 128 ; adjust neg value

serout B.7,N2400,(“-”) ; transmit negative symbol

serout B.7,N2400,(#b1) ; transmit value to serial LCD

goto main

�,�$
��

��

��

8
��
�
�
'

!��"���!5��
 �& %�

�()

��

��

�&"5!
"�&

��
2�!�
��

.
#��% !�"�%0�+!�1%��2
����"��3�!!�2���!4���"5**
2%�&��� � !%��%&�!4���&"5!
"�&��64� ��5 !�1�����%7�2
!%�5 ��!4��!��"�� �& %��

		
���

����

		
���
���

����
���

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

185

185

www.picaxe.com

readtemp12

Syntax:

READTEMP12 pin,wordvariable
- Pin is the input pin.

- Variable receives the raw 12 bit data read.

Function:

Read 12 bit temperature data from a DS18B20 digital temperature sensor and

store in variable. The conversion takes up to 750ms. Both readtemp and

readtemp12 take the same time to convert.

Information:

This command is for advanced users only. For standard ‘whole degree’ data use

the readtemp command.

The temperature is read back as the raw 12 bit data into a word variable (0.0625

degree resolution). The user must interpret the data through mathematical

manipulation. See the DS18B20 datasheet for more information on the 12 bit

Temperature/Data relationship.

See the readtemp command for a suitable circuit.

Note the readtemp12 command does not work with the older DS1820 or

DS18S20 as they have a different internal resolution. This command is not

designed to be used with parasitically powered DS18B20 sensors, the 5V pin of

the sensor must be connected.

This command cannot be used on the following pins due to silicon restrictions:

08, 08M, 08M2 3 = fixed input

14M, 14M2 C.3 = fixed input

18M2 C.4, C.5 = fixed input

20M,20M2, 20X2 C.6 = fixed input

Effect of increased clock speed:

This command only functions at 4MHz. M2, X1 and X2 parts automatically use

the internal 4MHz resonator for this command.

Example:

main:

readtemp12 1,w1 ; read value into b1

debug ; transmit to computer screen

goto main

		
���

����

		
���
���

����
���

		
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

186

186

www.picaxe.com

readowclk

Syntax:

readowclk pin
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Read seconds from a DS2415 clock chip.

Information:

This command only applies to the PICAXE-18A. It is now rarely used as most

users prefer to use the more powerful DS1307 i2c part interfaced to a PICAXE-

18M2 microcontroller.

The DS2415 is an accurate ‘second counter’. Every second, the 32 bit (4 byte)

counter is incremented. Time is very accurate due to the use of a watch crystal.

Therefore by counting elapsed seconds you can work out the accurate elapsed

time. The 32 bit register is enough to hold 136 years worth of seconds. If desired

the DS2415 can be powered by a separate 3V cell and so continue working when

the main PICAXE power is removed.

Note that after first powering the DS2415 you must use a resetowclk command to

activate the clock crystal and reset the counter. See the circuit diagram under the

resetowclk command description.

The readowclk command reads the 32 bit counter and then puts the 32 bit value

in variables b10 (LSB) to b13 (MSB) (also known as w6 and w7).

Using byte variables:

The number in b10 is the number of single seconds

The number in b11 is the number x 256 seconds

The number in b12 is the number x 65536 seconds

The number in b13 is the number x 16777216 seconds

Using word variables:

The number in w6 is the number of single seconds

The number in w7 is the number x 65536 seconds

Effect of Increased Clock Speed:

This command will only function at 4MHz.

Example:

main:

resetowclk 2 ; reset the clock on pin2

loop1:

readowclk 2 ; read clock on input2

debug ; display the elapsed time

pause 10000 ; wait 10 seconds

goto loop1

		
���

		
		
		

		
		
		

		
		
		
		

		
		
		

		
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

187

187

www.picaxe.com

resetowclk

Syntax:

resetowclk pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Reset seconds count to 0 on a DS2415 clock chip.

Information:

This command resets the time on a DS2415 one wire clock chip. It also switches

the clock crystal on, and so must be used when the chip is first powered up to

enable the time counting.

Effect of Increased Clock Speed:

This command will only function at 4MHz.

See the example under the readowclk command.

��

��

����,����

��

�����

��

��

.
#��% !�"�%0�+!�1%��2
����"��3�!!�2���!4�"5**
2%�&��� � !%� �%&�!4���&"5!
"�&��64� ��5 !�1�����%7�2
!%�5 ��!4��%&�������2�7�+�
*�(��!4� �

�()

��

��

�&"5!

8
��
�
�
'

8�&���>�1�!?�+�&�1�
+%&&�+!�2�!%�!4��&%���*
8����'� 5""*/�%���
 �"���!�����1�+(5"�+�**
>!�������&!��&�2��4�&
8����'�"%�������%7�2?

�1�!

�22

��/ !�*��5 !�1�
���)�$(CD���!+4
:5��!D�+�/ !�*���!4
�"��>&%!���?�*%�2
+�"�+�!�&+��

�

�

�

�

�

�

���&�

		
���

		
		
		

		
		
		

		
		
		
		

		
		
		

		
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

188

188

www.picaxe.com

readowsn

Syntax:

readowsn pin
- Pin is a variable/constant which specifies the input pin to use.

Function:

Read serial number from any Dallas/Maxim 1-wire device.

Information:

This command (read-one-wire-serial-number) reads the unique serial number

from any Dallas 1-wire device (e.g DS18B20 digital temp sensor, DS2415 clock,

or DS1990A iButton).

If using an iButton device (e.g. DS1990A) this serial number is laser engraved on

the casing of the iButton.

The readowsn command reads the serial number and then puts the family code

in b6, the serial number in b7 to b12, and the checksum in b13

Note that you should not use variables b6 to b13 for other purposes in your

program during a readowsn command.

%��&A�
/�**%�
A���&

1*5�

-'
�
�

-'
�

�
�
��� ��

��

��

�
5!!%&
;�/ .
#��% !�"�%0�+!�1%��2

����"��3�!!�2���!4�"5**
2%�&��� � !%� �%&�!4���&"5!
"�&��64� ��5 !�1�����%7�2
!%�5 ��!4��%&�������2�7�+�
*�(��!4� �

�()

��

��

�&"5!

8
��
�
�
'

64�����2%� &�>���2%&�
���� ����*&5�1��?
+%���&2���**����2�!4�
 ����*�&5�1���3�%���&/
��**� �������2�7�+��*�(�
���,�EE����
5!!%&�(�/�

Part RSA002 - iButton Contact probe

		
���

����

		
���
���

����
���

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

189

189

www.picaxe.com

This command cannot be used on the following pins due to silicon restrictions:

08, 08M, 08M2 3 = fixed input

14M, 14M2 C.3 = fixed input

18M2 C.4, C.5 = fixed input

20M,20M2, 20X2 C.6 = fixed input

Example:

main:

let b6 = 0 ; reset family code to 0

; loop here reading numbers until the

; family code (b6) is no longer 0

loop1:

readowsn C.2 ; read serial number on input2

if b6 = 0 then loop1

; Do a simple safety check here.

; b12 serial no value will not likely be FF

; if this value is FF, it means that the device

; was removed before a full read was completed

; or a short circuit occurred

if b12 = $FF then main

; Everything is ok so continue

debug ; ok so display

pause 1000 ; short delay

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

190

190

www.picaxe.com

reconnect

Syntax:

RECONNECT

Function:

Reconnect a disconnected PICAXE so that it scans for new downloads.

Information:

The PICAXE chips constantly scan the serial download pin to see if a computer is

trying to initialise a new program download. However when it is desired to use

the download pin for user serial communication (serrxd command), it is

necessary to disable this scanning.

After disconnect is used it will not be possible to download a new program until:

1) the reconnect command is issued

2) a reset command is issued

3) a hardware reset is carried out

Remember that is always possible to carry out a new download by carrying out

the ‘hard-reset’ procedure.

Example:

disconnect

serrxd [1000, timeout],@ptrinc,@ptrinc,@ptr

reconnect

		
		

����
����

		
����
����

		
		

����

		
		

���
����

		

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

191

191

www.picaxe.com

reset

Syntax:

reset

Function:

Force a chip reset. This is the software equivalent of pressing the external reset

switch or removing/reconnecting power.

Information:

The reset command is the software equivalent of pressing the external reset switch

(if present). The program is reset to the first line and all variables, stacks etc are

reset.

Example:

main:

let b2 = 15 ; set b2 value

pause 2000 ; wait for 2 seconds

gosub flsh ; call sub-procedure

let b2 = 5 ; set b2 value

pause 2000 ; wait for 2 seconds

reset ; start again

		
		

����

		
		
		

����
		

		
����

		
		

����
����

		
����
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

192

192

www.picaxe.com

restart

Syntax:

restart task
- task is a variable/constant which indicates which task to restart

Function:

Restart the task.

Information:

M2 parts can process a number of tasks in parallel. The restart command is used

to restart a single task back to its first line. If the task is suspended at that point it

will also be resumed. All other tasks continue as normal. This command does not

reset any variables, to do this a ‘reset’ command would be needed to reset the

entire chip.

Example:

start0:

b3 = 0 ; reset b3

loop0:

high B.0 ; B.0 high

pause 1000 ; wait for 1 second

low B.0 ; B.0 low

pause 1000 ; wait for 1 second

inc b3 ; increment variable

goto loop0 ; loop

start1:

inc b4 ; increment variable

if b4 > 10 then ; if b4 > 10 then

restart 0 ; restart task 0. Var b3 will drop to 0

b4 = 0

end if

debug ; display variables

pause 1000

goto start1

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

193

193

www.picaxe.com

resume

Syntax:

resume task
- task is a variable/constant which indicates which task to restart

Function:

Resume a suspended task.

Information:

M2 parts can process a number of tasks in parallel. The resume command is used

to resume a previously suspended task. All other tasks continue as normal. If the

task is already running the command is ignored.

Example:

start0:

high B.0 ; B.0 high

pause 100 ; wait for 0.1 second

low B.0 ; B.0 low

pause 100 ; wait for 0.1 second

goto start0 ; loop

start1:

pause 5000 ; wait 5 seconds

suspend 0 ; suspend task 0

pause 5000 ; wait 5 seconds

resume 0 ; resume task 0

goto start1 ; loop

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

194

194

www.picaxe.com

return

Syntax:

RETURN

Function:

Return from subroutine.

Information:

The return command is only used with a matching ‘gosub’ command, to return

program flow back to the main program at the end of the sub procedure. If a

return command is used without a matching ‘gosub’ beforehand, the program

flow will crash.

Example:

main:

let b2 = 15 ; set b2 value

pause 2000 ; wait for 2 seconds

gosub flsh ; call sub-procedure

let b2 = 5 ; set b2 value

pause 2000 ; wait for 2 seconds

gosub flsh ; call sub-procedure

end ; stop accidentally falling into sub

flsh:

for b0 = 1 to b2 ; define loop for b2 times

 high B.1 ; switch on output B.1

 pause 500 ; wait 0.5 seconds

 low B.1 ; switch off output B.1

 pause 500 ; wait 0.5 seconds

next b0 ; end of loop

return ; return from sub-procedure

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

195

195

www.picaxe.com

reverse

Syntax:

REVERSE pin,pin,pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin an output if now input and vice versa.

Information:

This command is only required on microcontrollers with programmable input/

output pins. This command can be used to change a pin that has been configured

as an input to an output.

All pins are configured as inputs on first power-up (unless the pin is a fixed

output). Fixed pins are not affected by this command. These pins are:

08, 08M, 08M2 0 = fixed output 3 = fixed input

14M2 B.0 = fixed output C.3 = fixed input

18M2 C.3 = fixed output C.4, C.5 = fixed input

20M2, 20X2 A.0 = fixed output C.6 = fixed input

28X2, 40X2 A.4 = fixed output

Example:

main:

input B.1 ; make pin input

reverse B.1 ; make pin output

reverse B.1 ; make pin input

output B.1 ; make pin output

��
���

����

		
		
		

����
		

		
		
		

����

		
		

����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

196

196

www.picaxe.com

rfin

Syntax:

rfin pin, variable, variable, variable, variable, variable, variable, variable, variable
- pin is a variable/constant which specifies the i/o pin to use

- variables are 8 individual byte variables to receive the 8 bytes of data

Function:

Receive 8 bytes of Manchester encoded radio data transmitted by a NKM2401

encoder or PICAXE rfout command over a wireless link. Note that the rfin

command always receives exactly 8 bytes of data, so exactly 8 data variables are

required within this command syntax.

Information:

The rfin command decodes and receives 8 bytes of data transmitter over a radio

link from a NKM2401 encoder or rfout command from another PICAXE chip.

This provides much more reliable radio communication than using serin

commands with low cost RF modules.

Note this command is blocking, no other commands will process whilst the rfin

command is waiting for RF data to be received. If a system that can process other

commands whilst waiting for data to be received is required, the NKM2401

should be used as a dedicated slave receiver alongside the PICAXE chip. This

allows the NKM2401 to receive and store the data at any time, so that the PICAXE

chip can then read the data as and when it is ready to do so.

The NKM2401 decoder can be used with all PICAXE chips, even those that do not

support the rfin command (as it uses the serin command). For futher details

about how to use the NKM2401 decoder please see the AXE213 datasheet at:

www.rev-ed.co.uk/docs/axe213.pdf

This datasheet also explains in detail how to use low cost RF modules.

Using rfin command Using serin command with NKM2401

(blocking) (non-blocking)

		
		
		

		
		
		

����
		

		
����

		
����

		

		
		
		

����

		
		

����

���������	
��

��

��

8
��

�
�
'

��

��

��

�� .
;
�
��

��

��

��

�
�+

��
7�

�

��

��

8
��

�
�
'

��

��

��

��

�
�+

��
7�

�

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

197

197

www.picaxe.com

Example Wiring Connection:

The data pin of the receiver module (e.g. part

RFA001) is connected to the input pin of the

PICAXE chip.

Note that a suitable aerial (antenna) must be

connected and that there must be at least 1m

distance between transmitter and receiver.

Effect of increased clock speed:

This command only functions at 4MHz. M2

and X2 parts automatically use the internal

4MHz resonator for this command.

Example:

main:

rfin C.0, b0,b1,b2,b3,b4,b5,b6,b7

debug

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

198

198

www.picaxe.com

rfout

Syntax:

rfout pin, (data, data, data, data, data, data, data, data)
- pin is a variable/constant which specifies the i/o pin to use

- data is a constant/variable specifying the byte data

Function:

Send 8 bytes of Manchester encoded radio data to a NKM2401 decoder or a

PICAXE rfin command over a wireless link. Note that the rfout command always

sends 8 bytes of data, so exactly 8 data variables are required within this

command syntax.

Information:

The rfout command encodes and transmits 8 bytes of data over a radio link to a

NKM2401 decoder or another PICAXE chip. This provides much more reliable

radio communication than using serout commands with low cost RF modules.

This command is equivalent to using an NKM2401 encoder to transmit the data.

Therefore if using a PICAXE chip that does not support this command, simply

use a NKM2401 encoder instead.

The NKM2401 encoder can be used with all PICAXE chips, even those that do not

support the rfout command. For futher details about how to use the NKM2401

decoder please see the AXE213 datasheet at:

www.rev-ed.co.uk/docs/axe213.pdf

This datasheet also explains in detail how to use low cost RF modules.

Using rfout command Using serout command with NKM2401

		
		
		

		
		
		

����
		

		
����

		
����

		

		
		
		

����

		
		

����

���������	
��

��

��

8
��
�
�
'

��

��

��

��.
;
�
��

��

��

��6�
�&

 �
�!!
��

6��'.

6�

��

��

8
��

�
�
'

��

��

��

��6�
�&

 �
�!!
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

199

199

www.picaxe.com

Example Wiring Connection:

The data pin of the transmitter module (e.g.

part RFA001) is connected to the output pin

(TX) of the PICAXE chip. A second output

pin (TXEN) is also used to power on the

transmitter when required. This circuit only

supports transmitters that require under

20mA current, for higher power units use a

transistor switching circuit to power the

transmitter instead.

Do not leave the transmitter permanently

powered.

Do not connect to the Darlington driver ‘buffered’ outputs on a project board, as

the data signal must be connected directly to the PICAXE output pin.

Effect of increased clock speed:

This command only functions at 4MHz. M2 and X2 parts automatically use the

internal 4MHz resonator for this command.

Example:

main:

readtemp C.1, b7 ; read temperature into variable b7

bintoascii b7,b8,b9,b10 ; separate into 3 ASCII characters

high b.1 ; switch radio module on (TXEN)

rfout b.0,(“Temp=”,b8,b9,b10) ; send data (TX)

low b.1 ; switch radio module off (TXEN)

pause 2000 ; wait 2 seconds

goto main ; loop forever

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

200

200

www.picaxe.com

run

Syntax:

RUN slot
- slot is a variable/constant which specifies which program to run

Function:

Run another program slot.

Information:

The 28X2/40X2 parts have four completely separate internal program slots. By

default program 0 runs whenever the part is reset. The 20X2 only supports slot 0.

A new program is downloaded into any slot via the #slot directive, which is

added as a line to the program. It is only possible to download one program to

one slot at a time. The other programs are not affected by the download.

To run the second program (after downloading with a #slot 1 directive) use the

command ‘run 1’. This command stops the current program and starts the second

program running immediately. Variables and pin conditions are not reset, so can

be shared between the programs. However all other system functions, such as the

gosub/return stack, are reset when the second program starts. Therefore slot 1

program can only be considered as a a ‘goto’ from the slot 0 program, not a

‘gosub’.

When in program 1 you can also use ‘run 0’ to restart the first program. If you

wish to also reset the variables you must use a ‘reset’ command instead to restart

program 0. This is equivalent to ‘run 0’ + variable reset.

Note that when carrying out a new program download the download is into the

first program slot by default. If you wish to download into the second program

slot you must use the ‘#slot 1’ directive within the program.

All X2 parts also support running programs from external i2c EEPROM chips.

These are known as program slots 4 to 7 (on an EEPROM with address 000).

As up to 8 possible external EEPROM addresses may be used, that gives a

theoretical total of 32 (8x4) external programs. When using an EEPROM not at

address 000, bits 7-5 of the slot number are used as the EEPROM address, e.g. for

an EEPROM with address pins A2 low, A1 high and A0 high, running slot 5

would be

run %011xx101 (where x = 0 or 1, don’t care)

When running a program from an external EEPROM chip certain restrictions

apply:

1) the i2c SDA and SCL pins are reserved, and so the i2c bus cannot be used for

other commands

2) program operation will be marginally slower, as retrieving data from an

external EEPROM is slower than retrieving data from the internal program

memory.

Also see the ‘booti2c’ command, which may be preferable to using slots 4-7.

		
		
		

		
		
		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

201

201

www.picaxe.com

Additional Information - Understanding Program Slots

The X2 range have up to 4 internal program slots, numbered 0 to 3. Each slot is

completely independent of the other slots. When the microcontroller is reset the

program in slot 0 automatically starts running. The other programs can then be

started by using a ‘run’ command.

A new program download is, by default, into slot 0. To download into another

program slot the #slot directive must be used in the program, .e.g.

#slot 1

will download the program into slot 1 instead of slot 0. All other slots are

unaffected.

Note that when the download is complete the program will always start running

from slot 0, not the slot just downloaded. If you wish to instantly test, for

instance, a program downloaded into slot 1, the command ‘run 1’ must have

been previously downloaded into slot 0.

As the microcontroller only has one internal EEPROM data area (used by the

EEPROM, read and write commands) any download into any internal memory

slot will always update the same EEPROM memory. To disable this update it is

possible to use a #no_data directive in the downloaded program. This prevents

the EEPROM data area being updated (i.e. any EEPROM command data is

ignored).

The usual way to make use of the program slots is to test an input (e.g. jumper

link) upon reset, and then run the different program according to the input

condition e.g.

#slot 0

if pinC.1 = 1 then

run 1

endif

if pinC.2 = 1 then

run 2

endif

However program slots can be combined into one ‘long program’ as long as the

following points are noted:

1) No gosubs (including the interrupt) can be shared between program slots

2) The gosub/return stack is reset when moving from one slot to another

3) Outputs and variables/scratchpad are not reset

4) The ‘run X’ command should be regarded as ‘goto to the start of program X’

Note that ‘run 0’ is not the same as the ‘reset’ command, as the reset command

will also reset all variables and convert all pins back to inputs.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

202

202

www.picaxe.com

External Program Slots

As well as the internal memory slots, 4 additional slots can be used by connecting

an external i2c EEPROM chip (part 24LC128). As up to 8 different 24LC128

chips could be used on the same I2C bus, this gives a theoretical 32 (8x4)

additional program slots.

For an 24LC128 at address 0 (ie pins A0, A1, A2 all connected to 0V) the i2c

program slots are simply numbered 4 to 7. For other 24LC128 addresses the run

(and #slot) number must be calculated as follows

Bit7 24LC128 address pin A2

Bit6 24LC128 address pin A1

Bit5 24LC128 address pin A0

Bit4 reserved for future use, use 0

Bit3 reserved for future use, use 0

Bit2 1 = I2C, 0 = internal

Bit1, 0 4 possible slot numbers

Running a program from external i2c has some restrictions

1) The i2c bus is reserved exclusively for the program reading

2) The i2c pins cannot be used for any other purpose

3) Any hardware i2c/spi commands are completely ignored

4) Program execution speed is reduced, due to the relatively slow speed of

reading data from the external 24LC128

The external 24LC128 only stores the program memory space. Any download

data memory information (ie from the EEPROM command) is not stored

externally. Read and write commands continue to act on the internal PICAXE

EEPROM data memory space.

Example:

#slot 0

init:

if pinC.1 =1 then main ‘ test an input pin upon reset

run 1 ‘ input is low so run slot 1 program

main: high B.1 ‘ this is normal program (slot 1)

etc...

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

203

203

www.picaxe.com

select case \ case \ else \ endselect

Syntax:

SELECT VAR
CASE VALUE
{code}
CASE VALUE, VALUE...
{code}
CASE VALUE TO VALUE
{code}
CASE ?? value
{code}
ELSE
{code}
ENDSELECT

- Var is the value to test.

- Value is a variable/constant.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Function:

Compare a variable value and conditionally execute sections of code.

Information:

The multiple select \ case \ else \endselect command is used to test a variable for

certain conditions. If these conditions are met that section of the program code is

executed, and then program flow jumps to the endselect position. If the

condition is not met program flows jumps directly to the next case or else

command.

The ‘else’ section of code is only executed if none of the case conditions have

been true.

Example:

select case b1

case 1

high 1

case 2,3

low 1

case 4 to 6

high 2

else

low 2

endselect

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

204

204

www.picaxe.com

serin

Syntax:

SERIN pin,baudmode,(qualifier,qualifier...)
SERIN pin,baudmode,(qualifier,qualifier...),{#}variable,{#}variable...
SERIN pin,baudmode,{#}variable,{#}variable...

Additional optional timeout syntax options for M2, X1 and X2 parts:

SERIN [timeout], pin,baudmode,(qualifier...)
SERIN [timeout], pin,baudmode,(qualifier...),{#}variable,{#}variable
SERIN [timeout], pin,baudmode,{#}variable,{#}variable
SERIN [timeout,address], pin,baudmode,(qualifier...)
SERIN [timeout,address], pin,baudmode,(qualifier...),{#}variable,{#}variable
SERIN [timeout,address], pin,baudmode,{#}variable,{#}variable

- Pin is a variable/constant which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

Txxx give a true output (idle high)

Nxxx give an inverted output (idle low)

 for older 08 / 08M / 18 / 18A / 28 / 28A parts

4MHz 8MHz 16MHz
T300_4 T600_8 T1200_16

T600_4 T1200_8 T2400_16

T1200_4 T2400_8 T4800_16

T2400_4 T4800_8 T9600_16

N300_4 N600_8 N1200_16

N600_4 N1200_8 N2400_16

N1200_4 N2400_8 N4800_16

N2400_4 N4800_8 N9600_16

 for all other parts (e.g. all X1, X2, M2 parts)

4MHz 8MHz 16MHz
T600_4 T1200_8 T2400_16

T1200_4 T2400_8 T4800_16

T2400_4 T4800_8 T9600_16

T4800_4 T9600_8 T19200_16

N600_4 N1200_8 N2400_16

N1200_4 N2400_8 N4800_16

N2400_4 N4800_8 N9600_16

N4800_4 N9600_8 N19200_16

32MHz 64MHz
T4800_32 T9600_64

T9600_32 T19200_64

T19200_32 T38400_64

T38400_32 T76800_64

N4800_32 N9600_64

N9600_32 N19200_64

N19200_32 N38400_64

N38400_32 N76800_64

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

205

205

www.picaxe.com

- Qualifiers are optional variables/constants (0-255) which must be received in

exact order before subsequent bytes can be received and stored in variables.

- Variable(s) receive the result(s) (0-255). Optional #’s are for inputting ASCII

decimal numbers into variables, rather than raw characters.

- Timeout is an optional variables/constants which sets the timeout period in

milliseconds

- Address is a label which specifies where to go if a timeout occurs.

Function:

Serial input with optional qualifiers (8 data, no parity, 1 stop).

Information:

The serin command is used to receive serial data into an input pin of the

microcontroller. It cannot be used with the serial download input pin, which

requires use of the serrxd command instead.

Pin specifies the input pin to be used. Baud mode specifies the baud rate and

polarity of the signal. When using simple resistor interface, use N (inverted)

signals. When using a MAX232 type interface use T (true) signals. The protocol is

fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).

Note that the 4800 baud rate is available on the M, X, X1 and X2 parts. Note that

the microcontroller may not be able to keep up with processing complicated

datagrams at higher speeds - in this case it is recommended that the transmitting

device leaves a short delay (e.g. 2ms) between each byte.

Qualifiers are used to specify a ‘marker’ byte or sequence. The command

serin 1,N2400,(“ABC”),b1

requires to receive the string “ABC” before the next byte read is put into byte b1

Without qualifiers

serin 1,N2400,b1

the first byte received will be put into b1 regardless.

All processing stops until the new serial data byte is received. This command

cannot be interrupted by the setint command. The following example simply

waits until the sequence “go” is received.

serin 1,N2400,(“go”)

IMPORTANT!

It is a very common mistake to accidentally use a qualifier by mistake like this:

serin 1,N2400,(b1)

If you do not want a qualifier do not use brackets!

serin 1,N2400, b1

The M2, X1 and X2 parts can take an optional timeout value and address at the

start of the command. The timeout value, set in milliseconds, is the length of

time the serin command will wait for a serial command to be detected. After the

timeout period , if no signal is detected, program flow will jump to the time out

address.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

206

206

www.picaxe.com

After using this command you may have to perform a ‘hard reset’ to download a

new program to the microcontroller. See the Serial Download section for more

details.

A maximum of 4800 baud is recommended for complicated serial transactions at

8MHz. Internal resonators are not as accurate as external resonators, so in high

accuracy applications an external resonator device is recommended. However

microcontrollers with an internal resonator may be used successfully in most

applications, and may also be calibrated using the calibfreq command if required.

Example Computer Interface Circuit:

All 8 and 14 pin - Due to the internal structure of input3 (C.3) on these chips, a

1N4148 diode is required between the pin and V+ for serin to work on this

particular pin (‘bar’ end of diode to V+) with this circuit. All other pins have an

internal diode.

All 20 pin - Due to the internal structure of input6 (C.6) on this chip, a 1N4148

diode is required between the pin and V+ for serin to work on this particular pin

(‘bar’ end of diode to V+) with this circuit. All other pins have an internal diode.

Example:

main: for b0 = 0 to 63 ; start a loop

serin 6,N2400,b1 ; receive serial value

write b0,b1 ; write value into b1

next b0 ; next loop

��

��(

��(
�&"5!�8�&

�$��
=5!"5!�8�&

�%�"5!������>"�&��?

�%�"5!���6��>"�&��?

�%�"5!������>"�&��?

6%
+%�"5!�� 6%�8����'

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

207

207

www.picaxe.com

		
		

����
����

		
����
����

		
		

����

		
		

���
����

		

serrxd

Syntax:

SERRXD (qualifier,qualifier...)
SERRXD (qualifier,qualifier...),{#}variable,{#}variable...
SERRXD {#}variable,{#}variable...

Additional optional timeout syntax options for M2, X1 and X2 parts:

SERRXD [timeout], (qualifier...)
SERRXD [timeout], (qualifier...),{#}variable,{#}variable
SERRXD [timeout], {#}variable,{#}variable
SERRXD [timeout,address], (qualifier...)
SERRXD [timeout,address], (qualifier...),{#}variable,{#}variable
SERRXD [timeout,address], {#}variable,{#}variable

- Qualifiers are optional variables/constants (0-255) which must be received in

exact order before subsequent bytes can be received and stored in variables.

- Variable(s) receive the result(s) (0-255). Optional #’s are for inputting ASCII

decimal numbers into variables, rather than raw characters.

- Timeout is an optional variables/constants which sets the timeout period in

milliseconds (not available on M parts).

- Address is a label which specifies where to go if a timeout occurs.

Function:

Serial input via the serial input programming pin (at fixed baud rate 4800 (9600

on X2 parts), 8 data, no parity, 1 stop).

Information:

The serrxd command is similar to the serin command, but acts via the serial input

pin rather than a general input pin. This allows data to be received from the

computer via the programming cable.

The PICAXE chip normally constantly scans the serial download pin to see if a

computer is trying to initialise a new program download. However when it is

desired to use serrxd it is necessary to disable this scanning. This is automatic,

and is effectively the same as issuing a ‘disconnect’ command.

After disconnect is used it will not be possible to download a new program until:

1) the reconnect command is issued

2) a reset command is issued

3) a hardware reset is carried out

Remember that is always possible to carry out a new download by carrying out

the ‘hard-reset’ procedure (described in the PICAXE manual part 1).

Effect of Increased Clock Speed:

Increasing the clock speed increases the serial baud rate as shown below.

4MHz 8MHz 16MHz 32MHz
4800 9600 19200 38400

Example:

disconnect

serrxd [1000, timeout],@ptrinc,@ptrinc,@ptr

reconnect

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

208

208

www.picaxe.com

serout

Syntax:

SEROUT pin,baudmode,({#}data,{#}data...)
- Pin is a variable/constant which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

Txxx give a true output (idle high)

Nxxx give an inverted output (idle low)

 for 08 / 08M / 18 / 18A / 28 / 28A parts

4MHz 8MHz 16MHz
T300_4 T600_8 T1200_16

T600_4 T1200_8 T2400_16

T1200_4 T2400_8 T4800_16

T2400_4 T4800_8 T9600_16

N300_4 N600_8 N1200_16

N600_4 N1200_8 N2400_16

N1200_4 N2400_8 N4800_16

N2400_4 N4800_8 N9600_16

 for all other parts (e.g. all X1, X2, M2 parts)

4MHz 8MHz 16MHz
T600_4 T1200_8 T2400_16

T1200_4 T2400_8 T4800_16

T2400_4 T4800_8 T9600_16

T4800_4 T9600_8 T19200_16

N600_4 N1200_8 N2400_16

N1200_4 N2400_8 N4800_16

N2400_4 N4800_8 N9600_16

N4800_4 N9600_8 N19200_16

32MHz 64MHz
T4800_32 T9600_64

T9600_32 T19200_64

T19200_32 T38400_64

T38400_32 T76800_64

N4800_32 N9600_64

N9600_32 N19200_64

N19200_32 N38400_64

N38400_32 N76800_64

- Data are variables/constants (0-255) which provide the data to be output.

Optional #’s are for outputting ASCII decimal numbers, rather than raw

characters. Text can be enclosed in speech marks (“Hello”)

Function:

Transmit serial data output (8 data bits, no parity, 1 stop bit).

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

209

209

www.picaxe.com

Information:

The serout command is used to transmit serial data from an output pin of the

microcontroller. It cannot be used with the serial download output pin - use the

sertxd command in this case.

Pin specifies the output pin to be used. Baud mode specifies the baud rate and

polarity of the signal. When using simple resistor interface, use N (inverted)

signals. When using a MAX232 type interface use T (true) signals. The protocol is

fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).

A ‘N’ baud rate idles low, with data pulse going high.

A ‘T’ baud rate idles high, with data pulses going low. When using a T baud rate

the very first byte may become corrupt if the output pin was low before the serout

command (the pin will be automatically left high after the serout command). To

avoid this issue place the line high (via a’high’ command’) a few milliseconds

before the very first serout command.

The # symbol allows ASCII output. Therefore #b1, when b1 contains the data

126, will output the ascii characters “1” ”2” ”6” rather than the raw data 126.

Please also see the interfacing circuits , affect of resonator clock speed, and

explanation notes of the ‘serin’ command, as all of these notes also apply to the

serout command.

Example:

main:

for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value into b1

serout 7,N2400,(b1) ; transmit value to serial LCD

next b0 ; next loop

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

210

210

www.picaxe.com

sertxd

Syntax:

SERTXD ({#}data,{#}data...)
- Data are variables/constants (0-255) which provide the data to be output.

Function:

Serial output via the serout programming pin (baud 4800, 8 data, no parity, 1

stop).

Information:

The sertxd command is similar to the serout command, but acts via the serial

output pin rather than a general output pin. This allows data to be sent back to

the computer via the programming cable. This can be useful whilst debugging

data - view the uploaded data in the PICAXE>Terminal window. There is an

option within View>Options>Options to automatically open the Terminal

windows after a download.

The baud rate is fixed at 4800,n,8,1 (9600,n,8,1 on X2 parts)

Effect of Increased Clock Speed:

Increasing the clock speed increases the serial baud rate as shown below.

4MHz 8MHz 16MHz 32MHz 64MHz
4800 9600 19200 38400 76800

Example:

main:

for b1 = 0 to 63 ; start a loop

sertxd(“The value of b1 is ”,#b1,13,10)

pause 1000

next b1 ; next loop

		
���
���

����
���

		
���

����

		
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

211

211

www.picaxe.com

servo

Syntax:

SERVO pin,pulse
SERVO [preload],pin,pulse (X2 only)
- Pin is a variable/constant which specifies the i/o pin to use.

- Pulse is variable/constant (75-225) which specifies the servo position

- Preload is an optional timing constant (X2 parts only).

Function:

Pulse an output pin continuously to drive a radio-control style servo.

On M2 and X2 parts the servo commands only function on portB (B.0 to B.7)

Information:

Servos, as commonly found in radio control toys, are a very accurate motor/

gearbox assembly that can be repeatedly moved to the same position due to their

internal position sensor. Generally servos require a pulse of 0.75 to 2.25ms every

20ms, and this pulse must be constantly repeated every 20ms. Once the pulse is

lost the servo will lose its position. The servo command starts a pin pulsing high

for length of time pulse (x0.01 ms) every 20ms. This command is different to
most other BASIC commands in that the pulsing mode continues until another

servo, high or low command is executed. High and low commands stop the

pulsing immediately. Servo commands adjust the pulse length to the new pulse

value, hence moving the servo. Servo cannot be used at the same time as timer or

pwmout/hpwm as they share a common

internal timer resource.

The ‘servo’ command initialises the pin for

servo operation and starts the timer. Once a

pin has been initialised, it is recommended to

use the ‘servopos’ command to adjust

position. This prevents resetting of the timer,

which could cause ‘jitter’

Do not generally use a pulse value less than 75 or greater than 225, as this may

cause the servo to malfunction. Due to tolerances in servo manufacture all values

are approximate and will require fine-tuning by experimentation (e.g. 60 to 200).

Always use a separate 6V (e.g 4x AA cells) power supply for the servo, as they

generate a lot of electrical noise. Note that the overhead processing time required

for processing the servo commands every 20ms causes the other commands to be

slightly extended i.e. a pause command will take slightly longer than expected.

The servo pulses are also temporarily disabled during timing sensitive commands

like serin, serout, sertxd, debug etc.

On X2 parts servo will only function at 8MHz or 32MHz.

On M2 and X1 parts servo will only function at 4MHz or 16MHz.

On all other parts servo will only function at 4MHz.

On X2 parts it is possible to change the 20ms delay between pulses. This is

achieved via the ‘preload’ value, which is the number to preload into timer 1

before it starts counting. On X2 parts timer 1 increments every 0.5us, so for a

delay of 20ms (20,000us) we need 40,000 increments. Therefore the preload

value is 65,536 - 40,000 = 25,536.

8�&
����

F

�

,'��=

���,�88-<

���

�� ��

		
���
���

����
���

		
���

����

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

212

212

www.picaxe.com

As an example, for digital servos, you may wish to increase the pulse frequency to

every 10ms (note the delay must be longer than the total of all pulses to all

servos, so 10ms is only suitable for up to 4 servos (maximum delay for 4 servos is

when pulse length is 2.25ms, so 4x2.25 = 9ms).

10ms = 10,000 us = 20,000 steps

65536-20,000 = 45536

So the command is

servo [45536],1,75

Effect of increased clock speed:

The servo command will function correctly at 4MHz on all parts (except X2 parts,

which only function at 8 or 32MHz). 16MHz is also additionally supported on

M2 and X1 parts. No other frequency will work correctly.

Example:

init: servo 4,75 ; initialise servo

main: servopos 4,75 ; move servo to one end

pause 2000 ; wait 2 seconds

servopos 4,225 ; move servo to other end

pause 2000 ; wait 2 seconds

goto main ; loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

213

213

www.picaxe.com

servopos

Syntax:

SERVOPOS pin,pulse
SERVOPOS pin,OFF
- Pin is a constant which specifies the i/o pin to use.

- Pulse is variable/constant (75-225) which specifies the servo position

Function:

Adjust the pulse length applied to a radio-control style servo to change its

position. A servo command on the same pin number must have been previously

issued.

Information:

Servos, as commonly found in radio control toys, are a very accurate motor/

gearbox assembly that can be repeatedly moved to the same position due to their

internal position sensor. Generally servos require a pulse of 0.75 to 2.25ms every

20ms, and this pulse must be constantly repeated every 20ms. Once the pulse is

lost the servo will lose its position. The ‘servo’ command starts a pin pulsing high

for length of time pulse (x0.01 ms) every 20ms. The ‘servopos’ adjusts the length

of this pulse.

The ‘servo’ command initialises the pin for servo operation and starts the timer.

Once a pin has been initialised, it is recommended to use the ‘servopos’

command to adjust position. This prevents resetting of the timer, which could

cause ‘jitter’

Do not use a pulse value less than 75 or greater than 225, as this may cause the

servo to malfunction. Due to tolerances in servo manufacture all values are

approximate and will require fine-tuning by experimentation. Always use a

separate 6V (e.g 4x AA cells) power supply for the servo, as they generate a lot of

electrical noise. Note that the overhead processing time required for processing

the servo commands every 20ms causes the other commands to be slightly

extended i.e. a pause command will take slightly longer than expected. The servo

pulses are also temporarily disabled during timing sensitive serin, serout, sertxd

and debug commands.

Effect of increased clock speed:

The servo command will function correctly at 4 or 16MHz (M2/X1 parts)

8 or 32Mhz (X2 parts)

4MHz (all other)

No other frequency will work correctly.

Example:

init: servo B.4,75 ; initialise servo

main: servopos B.4,75 ; move servo to one end

pause 2000 ; wait 2 seconds

servopos B.4,225 ; move servo to other end

pause 2000 ; wait 2 seconds

goto main ; loop back to start

		
���
���

����
���

		
���

����

���
���
����
����

���
����
����

���
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

214

214

www.picaxe.com

setbit

Syntax:

SETBIT var, bit
- var is the target variable.

- bit is the target bit (0-7 for byte variables, 0-15 for word variables)

Function:

Set a specific bit in the variable.

Information:

This command sets (sets to 1) a specific bit in the target variable.

Example:

setbit b6, 0

setbit w4, 15

		
		
		
		
		

		
		
		

		
		

����
����

		
����
����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

215

215

www.picaxe.com

setint

Syntax:

SETINT OFF
SETINT input,mask (AND condition)
SETINT AND input,mask (AND condition)

Additional options for M2, X1 and X2 parts:

SETINT OR input,mask (OR Condition)
SETINT NOT input,mask (NOT the AND Condition)

Additional options for X2 parts:

SETINT input,mask,port
SETINT NOT input,mask,port

- input is a variable/constant (0-255) which specifies input condition.

- mask is variable/constant (0-255) which specifies the mask

- port is the X2 port (A,B,C,D)

Function:

Interrupt on a certain inputs condition.

X1 and X2 parts can also alternately interrupt on a certain ‘flags’ byte condition -

see setintflags command.

Information:

The setint command causes a polled interrupt on a certain input pin condition.

This can be a combination of pins on the default input port (portC). X2 parts can

also be redirected to look at a different port if required.

The default condition is a logical AND of the selected input pins.

On some parts it is also possible to take the NOT of this AND condition.

On some parts it is also possible to take a logical OR of the selected input pins.

A polled interrupt is a quicker way of reacting to a particular input combination.

It is the only type of interrupt available in the PICAXE system. The inputs port is

checked between execution of each command line in the program, between each

note of a tune command, and continuously during any pause command. If the

particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is

executed immediately. When the sub-procedure has been carried out, program

execution continues from the main program.

The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the input port,

masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be

ignored.

to interrupt on input1 high only

setint %00000010,%00000010

to interrupt on input1 low only

setint %00000000,%00000010

to interrupt on input0 high, input1 high and input 2 low

setint %00000011,%00000111

etc.

		
���
���

����
���

		
���

����

���
���
����
����

���
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

216

216

www.picaxe.com

Only one input pattern is allowed at any time. To disable the interrupt execute a

SETINT OFF command. The M2, X1, X2 parts also support the NOT condition,

where the interrupt occurs when the pattern is NOT as the port/mask define..

They can also use the ‘flags’ byte (instead of the input port) to generate the

interrupt condition.

Restrictions.

Due to internal port configuration on some of the chips there is a limitation on

which pins can be used. The default input port is portC.

14M/14M2 only inputs 0,1,2 may be used

20M only inputs 1-5 may be used

20M2/20X2 only portC may be used, and only C.1 to C.5 on portC

40X2 when using portA, only A.0 to A.3 may be used

Notes:

1) Every program which uses the SETINT command must have a corresponding

interrupt: sub-procedure (terminated with a return command) at the bottom

of the program.

2) When the interrupt occurs, the interrupt is permanently disabled. Therefore to

re-enable the interrupt (if desired) a SETINT command must be used within

the interrupt: sub-procedure itself. The interrupt will not be enabled until the

‘return’ command is executed.

3) If the interrupt is re-enabled and the interrupt condition is not cleared within

the sub-procedure, a second interrupt may occur immediately upon the return

command.

4) After the interrupt code has executed, program execution continues at the

next program line in the main program. In the case of the interrupted pause,

wait, play or tune command, any remaining time delay is ignored and the

program continues with the next program line.

More detailed SETINT explanation.

The SETINT must be followed by two numbers - a ‘compare with value’ (input)

and an ‘input mask’ (mask) in that order. It is normal to display these numbers in

binary format, as it makes it more clear which pins are ‘active’. In binary format

input7 is on the left and input0 is on the right.

The second number, the ‘input mask’, defines which pins are to be checked to see

if an interrupt is to be generated ...

- %00000001 will check input pin 0

- %00000010 will check input pin 1

- %01000000 will check input pin 6

- %10000000 will check input pin 7

- etc

These can also be combined to check a number of input pins at the same time...

- %00000011 will check input pins 1 and 0

- %10000100 will check input pins 7 and 2

Having decided which pins you want to use for the interrupt, the first number

(inputs value) states whether you want the interrupt to occur when those

particular inputs are on (1) or off (0).

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

217

217

www.picaxe.com

Once a SETINT is active, the PICAXE monitors the pins you have specified in

‘input mask’ where a ‘1’ is present, ignoring the other pins.

An input mask of %10000100 will check pins 7 and 2 and create a value of

%a0000b00 where bit ‘a’ will be 1 if pin 7 is high and 0 if low, and bit ‘b’ will be

1 if pin 2 is high and 0 if low.

The ‘compare with value’, the first argument of the SETINT command, is what

this created value is compared with, and if the two match, then the interrupt will

occur, if they don’t match then the interrupt won’t occur.

If the ‘input mask’ is %10000100, pins 7 and 2, then the valid ‘compare with

value’ can be one of the following ...

- %00000000 Pin 7 = 0 and pin 2 = 0

- %00000100 Pin 7 = 0 and pin 2 = 1

- %10000000 Pin 7 = 1 and pin 2 = 0

- %10000100 Pin 7 = 1 and pin 2 = 1

So, if you want to generate an interrupt whenever Pin 7 is high and Pin 2 is low,

the ‘input mask’ is %10000100 and the ‘compare with value’ is %10000000,

giving a SETINT command of ...

- SETINT %10000000,%10000100

The interrupt will then occur when, and only when, pin 7 is high and pin 2 is

low. If pin 7 is low or pin 2 is high the interrupt will not happen as two pins are

‘looked at’ in the mask.

Example:

setint %10000000,%10000000

; activate interrupt when pin7 only goes high

main:

low 1 ; switch output 1 off

pause 2000 ; wait 2 seconds

goto main ; loop back to start

interrupt:

high 1 ; switch output 1 on

if pin7 = 1 then interrupt ; loop here until the

; interrupt cleared

pause 2000 ; wait 2 seconds

setint %10000000,%10000000 ; re-activate interrupt

return ; return from sub

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

218

218

www.picaxe.com

In this example an LED on output 1 will light immediately the input is switched

high. With a standard if pin7 =1 then.... type statement the program could take

up to two seconds to light the LED as the if statement is not processed during the

pause 2000 delay time in the main program loop (standard program shown

below for comparison).

main:

low 1 ; switch output 1 off

pause 2000 ; wait 2 seconds

if pin7 = 1 then sw_on

goto main ; loop back to start

sw_on:

high 1 ; switch output 1 on

if pin7 = 1 then sw_on

; loop here until the condition is cleared

pause 2000 ; wait 2 seconds

goto main ; back to main loop

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

219

219

www.picaxe.com

		
		

����
����

		
����
����

		
		
		

		
		
		
		
		

		
		

setintflags

Syntax:

SETINTFLAGS OFF
SETINTFLAGS flags,mask
SETINTFLAGS AND flags,mask
SETINTFLAGS OR flags,mask
 SETINTFLAGS NOT flags,mask
- flagsis a variable/constant (0-255) which specifies flags byte condition.

- mask is variable/constant (0-255) which specifies the mask

Function:

Interrupt on a certain ‘flags’ byte condition.

Please also see the detailed usage notes under the ‘setint’ command, which also

apply to the ‘setintflags’ command. Only one interrupt can be active at any time.

Information:

The setintflags command causes a polled interrupt on a certain flags condition.

A polled interrupt is a quicker way of reacting to a particular event. It is the only

type of interrupt available in the PICAXE system. The flags byte is checked

between execution of each command line in the program, between each note of a

tune command, and continuously during any pause command. If the particular

inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is executed

immediately. When the sub-procedure has been carried out, program execution

continues from the main program.

The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the flags byte

masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be

ignored.

The system ‘flags’ byte is broken down into individual bit variables. See the

appropriate command for more specific details about each flag.

Name Special function Command
flag0 hint0flag X2 parts - interrupt on INT0 hintsetup

flag1 hint1flag X2 parts - interrupt on INT1 hintsetup

flag2 hint2flag X2 parts - interrupt on INT2 hintsetup

flag3 hintflag X2 parts - interrupt on any pin 0,1,2 hintsetup

flag4 compflag X2 parts - comparator flag compsetup

flag5 hserflag hserial background receive has occurred hsersetup

flag6 hi2cflag hi2c write has occurred (slave mode) hi2csetup

flag7 toflag timer overflow flag settimer

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

220

220

www.picaxe.com

to interrupt on timer 0 overflow

setintflags %10000000,%10000000

to interrupt on hi2c write (slave mode)

setintflags %01000000,%01000000

to interrupt on background hardware serial receive

setintflags %00100000,%00100000

Only one input pattern is allowed at any time. To disable the interrupt execute a

‘setintflags off’ command.

For more information about the various setintflags options (AND / OR / NOT)

please see the setint command.

Example:

setintflags %10000000,%10000000 ;set timer 0 to interrupt

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

221

221

www.picaxe.com

setfreq

Syntax:

setfreq freq
- freq is the keyword that selects the appropriate frequency

08M, 14M, 20M internal m4, m8

18A, 18M, 18X internal m4, m8

All M2 parts internal k31, k250, k500, m1, m2, m4, m8,m16,m32

20X2 internal k31, k250, k500, m1, m2, m4, m8,

m16, m32 ,m64

28X1, 40X1 internal k31,k125,k250,k500,m1, m2, m4, m8

external em4, em8, em10, em16, em20

28X2, 40X2 internal k31, k250, k500,m1, m2, m4, m8, m16

external em16, em32, em40, em64

28X2-5V, 40X2-5V internal k31, k250, k500,m1, m2, m4, m8

external em16, em32,em40

28X2-3V, 40X2-3V internal k31, k250, k500,m1, m2, m4, m8, m16

external em16, em32, em40, em64

where k31 = 31kHz internal resonator

m4 = 4MHz internal resonator

em16 = 16MHz external resonator etc.

Function:

Set the internal clock frequency for microcontrollers with internal resonator to

8MHz (m8) or some other value.

The default value on X2 parts is 8MHz internal. The default value on all other

parts is 4MHz internal.

Information:

The setfreq command can be used to change the speed of operation of the

microcontroller from 4MHz to 8MHz (or some other value). However note that

this speed increase affects many commands, by, for instance, changing their

properties (e.g. all pause commands are half the length at 8MHz).

Note that the X2parts have an internal x4 PLL inside the chip. This multiplies the

external resonator speed by 4. Therefore the external resonator value to be used

is 1/4 of the desired final speed (ie in mode em40 use an external 10MHz

resonator, for em16 use a 4MHz resonator).

The change occurs immediately. All programs default to m4 (4MHz) if a setfreq

command is not used (default is increased to m8, 8MHz on X2 parts).

Note that the Programming Editor only supports certain frequencies for new

program downloads. If your chip is running at a different frequency the M2, X1

and X2 parts will automatically switch back to internal 4MHz /8MHz default

speed to complete the download.

On M2 ‘multi-tasking’ programs the setfreq command may not be used, as the

oscillator speed is under control of the PICAXE firmware for task processing.

		
���
���

����
���

		
���

����

		
		

����
����

		
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

222

222

www.picaxe.com

The internal resonator frequencies are factory preset to the most accurate settings.

However advanced users may use the calibfreq command to adjust these factory

preset settings.

Some commands such as readtemp will only work at 4MHz. In these cases

change back to 4MHz temporarily to operate these commands (on M2, X1 and

X2 parts this is automatic).

Note that a temporary change in frequency (either programmed or automatic)

will have a direct effect on background frequency dependant tasks such as

pwmout / hpwm.

Example:

setfreq em32 ; setfreq to external 32MHz

pause 4000 ; NB not 4 seconds as overclocked

setfreq m4 ; setfreq to 4MHz

readtemp 1,b1 ; do command at 4MHz

setfreq em32 ; set freq back to 32MHz

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

223

223

www.picaxe.com

settimer

Syntax:

SETTIMER OFF
SETTIMER preload
SETTIMER COUNT preload
- preload is the constant/variable that selects the appropriate timing. For

convenience timer 1s value constants are predefined in the compiler.

t1s_4 (preload value 49910 - 1 second at 4MHz)

t1s_8 (preload value 34286 - 1 second at 8MHz)

t1s_16 (preload value 3036 - 1 second at 16MHz)

Function:

Configure and start the internal timer / counter.

Information:

The settimer command is used to configure the hardware timer / counter

function. The timer function can be used in two way - as an internal timer or as

an external counter (input 0 (C.0) only).

Note that the ‘debug’ command temporarily disables the timer (during the actual

variables transmission). Therefore use of the debug command at the same time as

the timer will cause false readings.

External Counter (not available on 20X2)
In external counter mode an internal counter register (not accessible to the end

user) is incremented on every positive going edge detected on input 0. This pulse

counting occurs in the background, so the PICAXE program can perform other

tasks at the same time as it is counting (unlike the count command, which stops

other processing during the count command time period). When the internal

counter register overflows from 65535 to 0, the special ‘timer’ variable is

automatically incremented.

Therefore to increment the timer variable on every 10 external pulses set the

preload value to 65536 - 10 = 65526. After ten pulses the counter register will

overflow and hence increment the ‘timer’ variable. To increment the ‘timer’

variable on every external pulse simply set the preload value to 65535.

If the timer word variable overflows (ie from 65535 to 0) the timer overflow flag

(toflag) is set. The toflag is automatically cleared upon the settimer command,

but can also be cleared manually in software via ‘let toflag = 0’. If desired an

interrupt can be set to detect this overflow by use of the setintflags command.

Example:

settimer count 65535 ‘ settimer to count mode

main:

pause 10000 ‘ wait 10 seconds, counting pulses

debug ‘ display timer value

goto main ‘ loop

		
		

����
����

		
����
����

		
		
		

		
		
		
		
		

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

224

224

www.picaxe.com

Internal Timer

In internal timer mode the time elapsed is stored in the word variable ‘timer’

which can be accessed as if was a normal variable e.g.

if timer > 200 then skip

When the timer word variable overflows (ie from 65535 to 0) the timer overflow

flag (toflag) is set . The toflag is automatically cleared upon the settimer

command, but can also be cleared manually via ‘let toflag = 0’. If desired an

interrupt can be set to detect this overflow by use of the setintflags command.

The period of the timer can be used defined. The timer operates with ‘minor

ticks’ and ‘major ticks’. A minor tick occurs every 1/(clock freq / 256) seconds.

With a 4MHz resonator this means a minor tick occurs every 64us (32us at

8MHz, 16us at 16MHz, 8us at 32MHz, 4us at 64MHz). When the minor tick

word variable (not accessible by the end user) overflows (from 65535 to 0) a

major tick occurs. The major tick increments the timer variable, and so the

number of major ticks passed can be determined by reading the ‘timer’ variable.

The preload value is used to preload the minor tick variable after it overflows.

This means it is not always necessary to wait the full 65536 minor ticks, for

instance, if the preload value is set to 60000 you then only have to wait 5536

minor ticks before the major tick occurs.

As an example, assume you wish the timer to increment every second at 4MHz.

We know that at 4MHz each minor tick takes 64us and 1 second is equivalent to

1000000 us. Therefore we require 15625 (1000000 / 64) minor ticks to give us a

1 second delay. Finally 65536 - 15625 = 49910, so our preload value become

49910.

Timer cannot be used at the same time as the servo command, as the servo

command requires sole use of the timer to calculate the servo pulse intervals.

Example:

settimer t1s_4 ‘ settimer to 1 second ticks at 4MHz

main:

pause 10000 ‘ wait 10 seconds

debug ‘ display timer value

goto main ‘ loop

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

225

225

www.picaxe.com

shiftin (spiin)

Syntax:

SPIIN sclk,sdata,mode,(variable {/ bits} {, variable {/ bits}, ...})
- sclk is a variable/constant which specifies the i/o pin to use as clock.

- sdata is a variable/constant which specifies the i/o pin to use as data.

 - Mode is a variable/constant (0-7) which specifies the mode:

0 MSBPre_L (MSB first, sample before clock, idles low)

1 LSBPre_L (LSB first, sample before clock, idles low)

2 MSBPost_L (MSB first, sample after clock, idles low)

3 LSBPost_L (LSB first, sample after clock, idles low)

4 MSBPre _H (MSB first, sample before clock, idles high)

5 LSBPre_H (LSB first, sample before clock, idles high)

6 MSBPost_H (MSB first, sample after clock, idles high)

7 LSBPost _H (LSB first, sample after clock, idles high)

- Variable receives the data.

- Bits is the optional number of bits to transmit. If omitted the default is 8.

Information:

The spiin (shiftin also accepted by the compiler) command is a ‘bit-bang’ method

of SPI communication on the X1 and X2 parts ONLY. All other parts must use the

sample program included overleaf to duplicate this behaviour.

For a hardware solution for X1/X2 parts see the ‘hshin’ command.

By default 8 bits are shifted into the variable. A different number of bits (1 to 8)

can be defined via the optional / bits. Therefore, for instance, if you require to

shift in 12 bits, do this as two bytes, one byte shifting 8 bits and the second byte

shifting 4 bits. Note that if you are using the LSB first method, the bits are shifted

right (in from the left) and so shifting just 4 bits would leave them located in bits

7-4 (not 3-0). With the MSB method the bits are shifted left (in from the right).

When connected SPI devices (e.g. EEPROM) remember that the data-in of the

EEPROM connects to the data-out of the PICAXE, and vice versa.

Other PICAXE microcontrollers do not have a direct spiin (shiftin) command.

However the same functionality found in other products can be achieved by

using the sub procedures listed overleaf.

Effect of increased clock speed:

Increasing the clock speed increases the SPI clock frequency.

Example:

spiin 2,1,LSB_Pre_H, (b1 / 8) ‘ clock 8 bits into b1

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

226

226

www.picaxe.com

shiftin/shiftout on PICAXE chips without native commands:

Some PICAXE microcontrollers do not have a shiftin command. However the

same functionality found in other products can be achieved by using the sub

procedures provided below. These sub-procedures are also saved in the file called

shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions to the top of your program and copy

the appropriate shiftin sub procedures to the bottom of your program.

Do not copy all options as this will waste memory space.

It is presumed that the data and clock outputs (sdata and sclk) are in the low

condition before the gosub is used.

BASIC line

“shiftin sclk, sdata,mode, (var_in(\bits)) “

 becomes

gosub shiftin_LSB_Pre (for mode LSBPre)

gosub shiftin_MSB_Pre (for mode MSBPre)

gosub shiftin_LSB_Post (for mode LSBPost)

gosub shiftin_MSB_Post (for mode MSBPost) ‘

‘ ~~~~~ SYMBOL DEFINITIONS ~~~~~

‘ Required for all routines. Change pin numbers/bits as required.

‘ Uses variables b7-b13 (i.e. b7,w4,w5,w6). If only using 8 bits

‘ all the word variables can be safely changed to byte variables.

‘

‘***** Sample symbol definitions *****

symbol sclk = 5 ‘ clock (output pin)

symbol sdata = 7 ‘ data (output pin for shiftout)

symbol serdata = input7 ‘ data (input pin for shiftin, note input7

symbol counter = b7 ‘ variable used during loop

symbol mask = w4 ‘ bit masking variable

symbol var_in = w5 ‘ data variable used durig shiftin

symbol var_out = w6 ‘ data variable used during shiftout

symbol bits = 8 ‘ number of bits

symbol MSBvalue = 128 ‘ MSBvalue

‘(=128 for 8 bits, 512 for 10 bits, 2048 for 12 bits)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

227

227

www.picaxe.com

‘==

‘ ~~~~~ SHIFTIN ROUTINES ~~~~~

‘ Only one of these 4 is required - see your IC requirements

‘ It is recommended you delete the others to save space

‘==

‘ ***** Shiftin LSB first, Data Pre-Clock *****

shiftin_LSB_Pre:

let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in / 2 ‘ shift right as LSB first

if serdata = 0 then skipLSBPre

var_in = var_in + MSBValue ‘ set MSB if serdata = 1

skipLSBPre: pulsout sclk,1 ‘ pulse clock to get next data bit

next counter

return

‘==

‘ ***** Shiftin MSB first, Data Pre-Clock *****

shiftin_MSB_Pre:

let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in * 2 ‘ shift left as MSB first

if serdata = 0 then skipMSBPre

var_in = var_in + 1 ‘ set LSB if serdata = 1

skipMSBPre: pulsout sclk,1 ‘ pulse clock to get next data bit

next counter

return

‘==

‘ ***** Shiftin LSB first, Data Post-Clock ***** ‘

shiftin_LSB_Post: let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in / 2 ‘ shift right as LSB first

pulsout sclk,1 ‘ pulse clock to get next data bit

if serdata = 0 then skipLSBPost

var_in = var_in + MSBValue ‘ set MSB if serdata = 1

skipLSBPost: next counter

return

‘==

‘ ***** Shiftin MSB first, Data Post-Clock *****

shiftin_MSB_Post: let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in * 2 ‘ shift left as MSB first

pulsout sclk,1 ‘ pulse clock to get next data bit

if serdata = 0 then skipMSBPost

var_in = var_in + 1 ‘ set LSB if serdata = 1

skipMSBPost: next counter

return

‘==

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

228

228

www.picaxe.com

shiftout (spiout)

Syntax:

SPIOUT sclk,sdata,mode,(data{/ bits}, {data{/ bits},...})
- sclk is a variable/constant which specifies the i/o pin to use as clock.

- sdata is a variable/constant which specifies the i/o pin to use as data.

 - Mode is a variable/constant (0-3) which specifies the mode:

0 LSBFirst_L (LSB first, idles low)

1 MSBFirst_L (MSB first, idles low)

4 LSBFirst_H (LSB first, idles high)

5 MSBFirst_H (MSB first, idles high)

- Data is a variable/constant that contains the data to send.

- Bits (optional) is the number of bits to transmit. If omitted the default

number of bits is automatically set to 8.

Information:

The spiout (shiftout is also accepted by the compiler) command is a bit-bang of

SPI communication on the X1 and X2 parts ONLY. All other parts must use the

sample program included overleaf to duplicate this behaviour.

For a hardware solution for X1/X2 parts see the ‘hspiout’ command

By default 8 bits are shifted out. A different number of bits (1 to 8) can be

defined via the optional / bits. Therefore, for instance, if you require to shift out

12 bits, do this as two bytes, one byte shifting 8 bits and the second byte shifting

4 bits. Note that if you are using the MSB first method, the bits are shifted left

(out from the left) and so when shifting just 4 bits they must be located in bits 7-

4 (not 3-0). With the LSB method the bits are shifted out from the right.

When connected SPI devices (e.g. EEPROM) remember that the data-in of the

EEPROM connects to the data-out of the PICAXE, and vice versa.

Some PICAXE microcontrollers do not have a shiftout command. However the

same functionality found in other products can be achieved by using the sub

procedures listed below.

Effect of increased clock speed:

Increasing the clock speed increases the SPI clock frequency.

Example:

spiout 1,2,LSB_First, (b1 / 8) ‘ clock 8 bits from b1

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

229

229

www.picaxe.com

shiftin/shiftout on PICAXE chips without native commands:

Some PICAXE microcontrollers do not have a shiftin command. However the

same functionality found in other products can be achieved by using the sub

procedures provided below. These sub-procedures are also saved in the file called

shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions (listed within the shiftin command)

to the top of your program and copy the appropriate shiftout sub procedures

below to the bottom of your program.

Do not copy both options as this will waste memory space.

It is presumed that the data and clock outputs (sdata and sclk) are in the low

condition before the gosub is used.

BASIC line

“shiftout sclk, sdata,mode, (var_out(\bits))”

becomes

gosub shiftout_LSBFirst (for mode LSBFirst)

gosub shiftout_MSBFirst (for mode MSBFirst)

Note the symbol definitions listed in the ‘shiftin’ command must also be used.

‘==

‘ ***** Shiftout LSB first *****

shiftout_LSBFirst:

for counter = 1 to bits ‘ number of bits

mask = var_out & 1 ‘ mask LSB

low sdata ‘ data low

if mask = 0 then skipLSB

high sdata ‘ data high

skipLSB: pulsout sclk,1 ‘ pulse clock for 10us

var_out = var_out / 2 ‘ shift variable right for LSB

next counter

return

‘==

‘ ***** Shiftout MSB first *****

shiftout_MSBFirst:

for counter = 1 to bits ‘ number of bits

mask = var_out & MSBValue ‘ mask MSB

high sdata ‘ data high

if mask = 0 then skipMSB

low sdata ‘ data low

skipMSB: pulsout sclk,1 ‘ pulse clock for 10us

var_out = var_out * 2 ‘ shift variable left for MSB

next counter

return

‘==

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

230

230

www.picaxe.com

sleep

Syntax:

SLEEP period
- Period is a variable/constant which specifies the duration of sleep in multiples

of 2.3 seconds (1-65535).

Function:

Sleep for some period (multiples of approximately 2.3s (2.1s on X1/X2 parts)).

Information:

The sleep command puts the microcontroller into low power mode for a period

of time. When in low power mode all timers are switched off and so the pwmout

and servo commands will cease to function. The nominal period is 2.3s, so sleep

10 will be approximately 23 seconds. The sleep command is not regulated and so

due to tolerances in the microcontrollers internal timers, this time is subject to -

50 to +100% tolerance. The external temperature affects these tolerances and so

no design that requires an accurate time base should use this command.

Shorter ‘sleeps’ are possible with the ‘nap’ command (where supported).

Some PICAXE chips support the disablebod (enablebod) command to disable

the brown-out detect function. Use of this command prior to a sleep will

considerably reduce the current drawn during the sleep command.

On non-X2 parts the command ‘sleep 0’ is ignored.

On X2 parts ‘sleep 0’ puts the microcontroller into permanent sleep - it does not

wake every 2.1 seconds. The microcontroller is only woken by a hardware

interrupt (e.g. hint pin change) or hard-reset. The chip will not respond to new

program downloads when in permanent sleep.

Effect of increased clock speed:

The sleep command uses the internal watchdog timer which is not affected by

changes in resonator clock speed.

Example:

main: high 1 ‘ switch on output 1

sleep 10 ‘ sleep for 23 seconds

low 1 ‘ switch off output 1

sleep 100 ‘ sleep for 230 seconds

goto main ‘ loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

231

231

www.picaxe.com

sound

Syntax:

SOUND pin,(note,duration,note,duration...)
- Pin is a variable/constant which specifies the i/o pin to use.

- Note(s) are variables/constants (0-255) which specify type and frequency.

Note 0 is silent for the duration. Notes 1-127 are ascending tones. Notes

128-255 are ascending white noises.

- Duration(s) are variables/constants (0-255) which specify duration

(multiples of approx 10ms).

Function:

Play sound ‘beep’ noises.

Information:

This command is designed to make audible ‘beeps’ for games and keypads etc. To

play music use the play or tune command instead. Note and duration must be

used in ‘pairs’ within the command.

See the tune command for suitable piezo / speaker circuits.

Effect of Increased Clock Speed:

The length of the note is halved at 8MHz and quartered at 16MHz.

Example:

main: let b0 = b0 + 1 ; increment b0

sound B.7,(b0,50) ; make a sound

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

232

232

www.picaxe.com

srlatch

Syntax:

SRLATCH config1, config2
- Config1 is a variable/constant which specifies the latch configuration

Bit 7 = 1 SR Latch is active

= 0 SR Latch is not used

Bit 6-4 SR Clock Divider Bits - sets latch clock frequency

654 Divider 16MHz 8MHz 4MHz

000 1/4 0.25us 0.5us 1us

001 1/8 0.5 1 2

010 1/16 1 2 4

011 1/32 2 4 8

100 1/64 4 8 16

101 1/128 8 16 32

110 1/256 16 32 64

111 1/512 32 64 128

Bit 3 = 1 Q is present on pin SRQ (when an output)

= 0 Pin SRQ is not used by the SR Latch module

Bit 2 = 1 NOT Q is present on pin SRNQ (when an output)

= 0 Pin SRNQ is not used by the SR Latch module

Bit 1 = 0 Not used, leave as 0

Bit 0 = 0 Not used, leave as 0

Note that not all parts have both SRQ and SRNQ pins. Some parts have just SRQ and

some have just SRNQ. See the pin out diagrams for the PICAXE chip in use.

Note also that as SRNQ on the 28X2/40X2 parts is the sertxd programming pin ‘debug’

and ‘sertxd’ commands will not function when SRNQ is set active (via bit 2).

- Config2 is a variable/constant which specifies the set/reset configuration.

When the bit is low the feature has no effect on the SR latch.

For 20X2 part:

Bit 7 = 1 HINT1 sets latch (see hintsetup)

Bit 6 = 1 Latch set pin is pulsed by clock (see above)

Bit 5 = 1 C2 comparator sets latch (see compsetup)

Bit 4 = 1 C1 comparator sets latch (see compsetup)

Bit 3 = 1 HINT1 resets latch (see hintsetup)

Bit 2 = 1 Latch reset pin is pulsed by clock (see above)

Bit 1 = 1 C2 comparator resets latch (see compsetup)

Bit 0 = 1 C1 comparator resets latch (see compsetup)

For 28X2/40X2 parts:

Bit 7 = 1 SRI pin high sets latch

Bit 6 = 1 Latch set pin is pulsed by clock (see above)

Bit 5 = 1 C2 comparator sets latch (see compsetup)

Bit 4 = 1 C1 comparator sets latch (see compsetup)

Bit 3 = 1 SRI pin high resets latch

Bit 2 = 1 Latch reset pin is pulsed by clock (see above)

Bit 1 = 1 C2 comparator resets latch (see compsetup)

Bit 0 = 1 C1 comparator resets latch (see compsetup)

Note that on 28X2/40X2 parts the SRI pin can act as either a set or reset pin by setting

bit 3 or bit 7. Do not set both bits at the same time!

		
		
		

����
		

		
		

����

		
����

		
����
����

		
		
		

����

		
		

����

���������	
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

233

233

www.picaxe.com

For M2 parts:

Bit 7 = 1 SRI pin high sets latch

Bit 6 = 1 Latch set pin is pulsed by clock (see above)

Bit 5 = 0 Not used, leave as 0

Bit 4 = 0 Not used, leave as 0

Bit 3 = 1 SRI pin high resets latch

Bit 2 = 1 Latch reset pin is pulsed by clock (see above)

Bit 1 = 0 Not used, leave as 0

Bit 0 = 0 Not used, leave as 0

Note that on M2 parts the SRI pin can act as either a set or reset pin by setting bit 3 or

bit 7. Do not set both bits at the same time!

Function:

Setup the internal hardware SR latch. The latch can be set by the SRSET

command, or one of the peripherals listed above. Similarly the latch can be reset

by the SRRESET command or one of the peripherals. If both SET and RESET

signals are present the latch goes to the RESET state.

Information:

Some PICAXE microcontrollers have an internal hardware SR latch. This latch can

be used independently of the PICAXE program, so that, for instance, an output

can be INSTANTLY controlled directly via the latch.

The SR latch also contains an internal clock source. This means the SR latch can

be optionally configured to act like a ‘555 timer’.

The output (Q) of the latch can be made available on pin SRQ (if present). The

inverse of the output (NOT Q) can be made available on pin SRNQ (if present).

The srlatch command does not automatically configure these pins as outputs, this

must be carried out by the user program before use.

Example for 20X2:

init: low B.1

high C.4

srlatch %10001100, %00000000

main: srset ; set the latch

pause 5000

srreset ; reset the latch

pause 5000

goto main ; loop back to start

,'6 ,

� ,
�
-�

6
�
C G

G�','6

,�G

,�.G

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

234

234

www.picaxe.com

srset / srreset

Syntax:

SRSET
SRRESET

Function:

Set or reset the hardware SR latch.

Information:

These two commands can set or reset the SR latch via the PICAXE program. Note

that the SR latch can also be configured to be set or reset by hardware peripherals

- see the SRLATCH command for more details.

Example for 20X2:

init: low B.1

high C.4

srlatch %10001100, %00000000

main: srset

pause 5000

srreset

pause 5000

goto main ; loop back to start

		
		
		

����
		

		
		

����

		
����

		
����
����

		
		
		

����

		
		

����

���������	
��

,'6 ,

� ,
�
-�

6
�
C G

G�','6

,�G

,�.G

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

235

235

www.picaxe.com

stop

Syntax:

STOP

Function:

Enter a permanent stop loop until the power cycles (program re-runs) or the PC

connects for a new download.

Information:

The stop command places the microcontroller into a permanent loop at the end

of a program. Unlike the end command the stop command does not put the

microcontroller into low power mode after a program has finished.

The stop command does not switch off internal timers, and so commands such as

servo and pwmout that require these timers will continue to function.

Example:

main:

pwmout C.1,120,400

stop

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

236

236

www.picaxe.com

suspend

Syntax:

suspend task
- task is a variable/constant which indicates which task to suspend

Function:

Suspend (pause) a task.

Information:

M2 parts can process a number of tasks in parallel. The suspend command is

used to pause a task. All other tasks continue as normal. If the task is already

running the command is ignored. If your program requires the task to be

suspended as the chip resets, use a suspend command as the first command in

that task. It will then suspend itself as soon at the chip resets.

Do not suspend all tasks at the same time!

Example:

start0:

high B.0 ; B.0 high

pause 100 ; wait for 0.1 second

low B.0 ; B.0 low

pause 100 ; wait for 0.1 second

goto start0 ; loop

start1:

pause 5000 ; wait 5 seconds

suspend 0 ; suspend task 0

pause 5000 ; wait 5 seconds

resume 0 ; resume task 0

goto start1 ; loop

		
		

����

		
		
		

����
		

		
		
		
		

		
		
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

237

237

www.picaxe.com

swap

Syntax:

SWAP variable1, variable2

Function:

Swap the values between two variables.

Information:

The swap command simply exchanges values between two variables.

Example:

b1 = 5

b2 = 10

main:

swap b1,b2

debug

pause 1000

goto main

		
		
		

����
		

		
		

����

		
		

����
����

		
����
����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

238

238

www.picaxe.com

switch on/off

Syntax:

SWITCH ON pin, pin, pin...
SWITCHON pin, pin, pin...
SWITCH OFF pin, pin, pin...
SWITCHOFF pin, pin, pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin output high / low.

Information:

This is a ‘pseudo’ command designed for use by younger students It is actually

equivalent to ‘high’ or ‘low’, ie the software outputs a high or low command as

appropriate.

Example:

main: switch on 7 ‘ switch on output 7

wait 5 ‘ wait 5 seconds

switch off 7 ‘ switch off output 7

wait 5 ‘ wait 5 seconds

goto main ‘ loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

239

239

www.picaxe.com

symbol

Syntax:

SYMBOL symbolname = value
SYMBOL symbolname = value ?? constant
- Symbolname is a text string which must begin with an alpha-character or ‘_’.

After the first character, it can also contains number characters (‘0’-’9').

- Value is a variable or constant which is being given an alternate symbolname.

- ?? can be any supported mathematical function e.g. + - * / etc.

Function:

Assign a value to a new symbol name.

Mathematical operators can also be used on constants (not variables)

Information:

Symbols are used to rename constants or variables to make them easier to

remember during a program. Symbols have no effect on program length as they

are converted back into ‘numbers’ before the download.

Symbols can contain numeric characters, but must not start with a numeric

character. Naturally symbol names cannot be command names or reserved words

such as input, step, etc. See the list of reserved words at the end of this section.

When using input and output pin definitions take care to use the term ‘pin0’ not

‘0’ when describing input variables to be used within if...then statements.

Example:

symbol RED_LED = B.7 ; define a output pin

symbol PUSH_SW = pinC.1 ; define a input switch

symbol DELAY = b0 ; define a variable symbol

let DELAY = 200 ; preload counter with 200

main: high RED_LED ; switch on output 7

pause DELAY ; wait 0.2 seconds

low RED_LED ; switch off output 7

pause DELAY ; wait 0.2 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

240

240

www.picaxe.com

table

Syntax:

TABLE {location},(data,data...)
- Location is an optional constant which specifies where to begin storing the

data in the program memory table. If no location is specified, storage

continues from where it last left off. If no location was initially specified,

storage begins at 0.

- Data are byte constants (0-255) which will be stored in the table.

Function:

Preload a lookup table for embedding in the downloaded program.

M2 parts have 512 locations (0-511). Other parts have 256 (0-255)

Information:

This is not an instruction, but a method of pre-loading the microcontroller’s

program memory lookup table. The data can then be read via the readtable

comannd (the data is fixed, cannot be altered apart from at program download).

The tablecopy command may be used to copy the table data to RAM in sections.

Example:

TABLE 0,(“Hello World”) ; save values in table

main:

for b0 = 0 to 10 ; start a loop

 readtable b0,b1 ; read value from table

 serout 7,N2400,(b1) ; transmit to serial LCD module

next b0 ; next character

		
		

����
����

		
����
����

		
		
		

		
		
		

����
		

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

241

241

www.picaxe.com

tablecopy

Syntax:

TABLECOPY start_location,block_size
- Start_location is the start address of the block to be copied (0-511)

- Block_size is the number of bytes to be copied to RAM (1-512)

Function:

Copy the lookup table to RAM. Each address is copied directly, i.e. table address 0

is copied to RAM address 0 (which is also byte variable b0).

Information:

The tablecopy command may be used to rapidly copy the table data to RAM in

user defined ‘blocks’. This is useful, for instance, to preload string data into RAM.

Each copy is made to exactly the same address in RAM, so that it can then be

accessed via peek or @bptr.

The copy will cease if the maximum address of the table (511) is exceeded.

Note that the lower bytes of RAM are always shared with the byte variables.

Therefore copying locations 0,1,2 etc. will overwrite b0,b1,b2 etc.

Example:

TABLE 0,(“Hello World”) ; save values in table

main:

tablecopy 0,5 ; copy addresses 0,1,2,3,4

debug ; show b0-b4 on screen

goto main ; loop

		
		
		
		

		
		
		

		
		
		

		
		
		

����
		

		
����

		
����

		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

242

242

www.picaxe.com

tmr3setup

Syntax:

TMR3SETUP config
- config is a constant/variable that configures timer3.

config is defined as (20X2, 28X2-5V, 28X2-3V, 40X2-3V, 40X2-5V)

Bit 7 Must be set (1)

Bit 6 Must be clear (0)

Bit 5, 4 1 : 8 Prescale (11)

1 : 4 Prescale (10)

1 : 2 Prescale (01)

1 : 1 Prescale (00)

Bit 3 Must be clear (0)

Bit 2 Must be clear (0)

Bit 1 Must be clear (0)

Bit 0 Timer 3 Enable (1= on, 0 = off)

config is defined as (28X2, 40X2)

Bit 7 Must be clear (0)

Bit 6 Must be clear (0)

Bit 5, 4 1 : 8 Prescale (11)

1 : 4 Prescale (10)

1 : 2 Prescale (01)

1 : 1 Prescale (00)

Bit 3 Must be clear (0)

Bit 2 Must be clear (0)

Bit 1 Must be set (1)

Bit 0 Timer 3 Enable (1= on, 0 = off)

Function:

Configure the internal timer3 on X2 parts.

Information:

The tmr3setup command configures the internal timer3 on X2 parts. This is a free

running timer that can be used for user background timing purposes.

The internal timer counts, when enabled, at a rate of (1/resonator speed) * 4.

This means, for instance, at 8MHz the internal timer increment occurs every

0.5us. This value can be optionally scaled by the prescale value (set via bits 5:4) ,

so with a 1: 8 prescale the increment will occur every 4us (8 x 0.5us).

The PICAXE word variable ‘timer3’ increments on every overflow of the internal

timer, ie 65536 x the increment delay. So at 8MHz with 1:8 prescalar the timer3

value will increment every 262144us (262ms).

‘timer3’ is a word length variable

		
		
		

����

		
		

����

		
		
		

		
		
		
		
		

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

243

243

www.picaxe.com

Example (for 28X2):

tmr3setup %00110011 ; timer3 on, 1:8 prescalar

main: pause 500 ; short delay

debug ; display timer3 value

goto main

Example (for 28X2-5V or 28X2-3V):

tmr3setup %10110001 ; timer3 on, 1:8 prescalar

main: pause 500 ; short delay

debug ; display timer3 value

goto main

Example (code suitable to automatically select 28X2, 28X2-3V, or 28X2-5V):

readsilicon b1 ; get chip silicon type

b1 = b1 & %11100000 ; mask out type bits

if b1 = %10000000 then ; chip is 28X2

 tmr3setup %00110011 ; timer3 on, 1:8 prescalar

else ; other type of chip

 tmr3setup %10110001 ; timer3 on, 1:8 prescalar

endif

main: pause 500 ; short delay

debug ; display timer3 value

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

244

244

www.picaxe.com

toggle

Syntax:

TOGGLE pin,pin,pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:

Make pin output and toggle state.

Information:

The high command inverts an output (high if currently low and vice versa)

On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this

command also automatically configures the pin as an output.

Example:

main:

toggle B.7 ; toggle output 7

pause 1000 ; wait 1 second

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

245

245

www.picaxe.com

togglebit

Syntax:

TOGGLEBIT var, bit
- var is the target variable.

- bit is the target bit (0-7 for byte variables, 0-15 for word variables)

Function:

Toggle (invert) a specific bit in the variable.

Information:

This command toggles (inverts) a specific bit in the target variable.

Examples:

togglebit b6, 0

togglebit w4, 15

		
		
		
		
		

		
		
		

		
		

����
����

		
����
����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

246

246

www.picaxe.com

touch

Syntax:

TOUCH channel, variable

- Channel is a variable/constant specifying the ADC pin

- Variable receives the byte touch reading

Function:

Read the touch sensor on the ADC channel and save reading into byte variable.

This command automatically configures the pin as an ADC and as a touch sensor.

Note that the touch command is a ‘pseudo’ command that actually processes a

‘touch16’ command and then scales the 16 bit result to fit in a byte (to give a

byte reading 0-255). This makes byte mathematics easier in simple programs but

does mean that the touch sensor accuracy is reducing by the scaling process.

When possible it is recommended that a ‘touch16’ command with a word

variable is used instead. This will maintain the highest possible accuracy.

Please note that the touch reading can be affected by long serial cables connected

to the project PCB (e.g. the older AXE026 download cable). Therefore it is not

recommended that the older AXE026 serial cable (or AXE026/USB adapter

combination) is used when trying to calibrate the touch command as it can affect

the readings, only use the AXE027 USB cable for this calibration.

Due to the design of the silicon inside the microcontroller each pin will give

slightly different readings. Therefore each pin must be calibrated separately.

See the ‘touch16’ command description for more details about using touch

sensors.

Affect of increased clock speed:

The clock speed will affect the count rate and so the result will change for each

clock speed. Therefore the touch command must be calibrated at the actual clock

speed in use.

Example:

main:

 touch C.1,b0 ; read value into b0

 if b0 > 100 then

high b.2 ; output B.2 on

 else

low b.2 ; output b.2 off

 endif

 goto main ; else loop back to start

		
		

����

		
		
		

����
		

		
����

		
����

		

		
		
		

����

		
		

����

���������	
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

247

247

www.picaxe.com

touch16

Syntax:

TOUCH16 channel, wordvariable
TOUCH16 [config], channel, wordvariable

- Channel is a variable/constant specifying the ADC pin

- Wordvariable receives the 16 bit touch reading (10 bit on X2 parts)

- Config is an optional variable/constant specifying a configuration value

Function:

Read the touch sensor on the ADC channel and save reading into word variable.

This command automatically configures the pin as an ADC and as a touch sensor.

Information:

The touch16 command is used to read the touch sensor value from the

microcontroller touch pin. Note that not all inputs have internal ADC / touch

functionality - check the pinout diagrams for the PICAXE chip you are using.

Note that touch16 requires use of a word variable (e.g. w1 not b1), use the touch

command for a byte variable.

IMPORTANT - Never ‘directly touch’ a touch sensor (e.g. a piece of bare wire)! A

touch sensor must be electrically isolated from the end user. On a commercial

PCB this can be as simple as the ‘solder resist’ lacquer layer printed over the pad,

or on a home made PCB this can be achieved by placing a small piece of 2mm

plastic over the PCB pad (the copper pad should be at least 15mm in diameter).

The top of a plastic project box makes an ideal insulator. Simply stick the PCB to

the inside of the box and place a ‘sticker’ as a target on the outside of the box.

Note touch sensor pads must NOT have any other electrical connection than the

connection to the PICAXE pin (e.g. touch sensor pads must not include a 10k pull

up or pull down resistor as found on many project boards).

Please note that the touch16 reading can be affected by long serial cables

connected to the project PCB (e.g. the older AXE026 download cable). Therefore

it is not recommended that the older AXE026 serial cable (or AXE026/USB

adapter combination) is used when trying to calibrate the touch16 command as

it can affect the readings, only use the AXE027 USB cable for this purpose.

Due to the design of the silicon inside the microcontroller each pin will give

slightly different readings. Therefore each pin must be calibrated separately.

In simple terms a touch sensor works by detecting the change in capacitance

when a finger is placed near the touch sensor pad. This capacitance affects the

frequency of an internal oscillating signal. By measuring the time it takes for a set

number of oscillations, the relative capacitance can be calculated. This value will

change when the finger is placed nearby - the finger increases the total

capacitance which then decreases the oscillation speed, and so the time taken

(value) of the touch16 command increases.

Touch sensors do not work when wet, they must be kept dry.

		
		

����

		
		
		

����
		

		
����

		
����

		

		
		
		

����

		
		

����

���������	
��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

248

248

www.picaxe.com

A touch sensor pad is made from an area of copper pour on a PCB, approximately

15mm - 20mm in diameter. It can be any shape. When designing multiple

sensors close by each other consider the width of a human finger and that user

finger placement will not always be that accurate. Where possible print visual

‘targets’ above the pad and leave as large as space as possible between pads.

The AXE181 ‘18M2 touch sensor demo board’ is the suggested low cost

development board for trying out touch sensors.

Note that M2 and X2 parts have different internal silicon methods of measuring

capacitance change. The X2 method is faster, but gives a 10 bit (0-1023) value

instead of a 16 bit value.

Effect of increased clock speed:

The clock speed will effect the count rate and so the result will change for each

clock speed. Therefore the touch16 command must be calibrated at the actual

clock speed in use.

Example:

main:

 touch16 C.1,w0 ; read value into w0

 if w0 > 3000 then

high B.2 ; output B.2 on

 else

low B.2 ; output B.2 off

 endif

 goto main ; else loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

249

249

www.picaxe.com

Configuration Byte - M2 parts

Normally the default configuration is recommended, so the optional config byte

is not required within the touch16 command. However the optional ‘config’ byte

can be used to fine tune the touch16 command operation if desired.

Config byte is broken down into 8 bits for M2 parts as follows:

bit7, 6, 5 = Counter preload value (bits 7-5), e.g.

= 000 Oscillation count required = 256

= 010 Oscillation count required = 192

= 100 Oscillation count required = 128

= 110 Oscillation count required = 64

= 111 Oscillation count required = 32

bit4,3 = 00 Touch sensor oscillator is off

= 01 Low range (0.1uA)

= 10 Medium range (1.2uA)

= 11 High Range (18uA)

bit 2,1,0 = Counter Prescalar (divide by 2 up to 256) e.g.

= 001 Prescalar divide by 4

The default value for M2 parts is %000 01 001

Configuration Byte - X2 parts

Normally the default configuration is recommended, so the optional config byte

is not required within the touch16 command. However the optional ‘config’ byte

can be used to fine tune the touch16 command operation if desired.

Config byte is broken down into 8 bits for X2 parts as follows:

bit7, 6, = Not used

bit5,4 = 00 Touch sensor oscillator is off

= 01 Nominal charge current

= 10 Medium current (10 x Nominal)

= 11 High current (100 x Nominal)

bit 3,2,1,0 = Charge Time in multiples of 2us (1-15)

The default value for X2 parts is %0011 0010

(High current, charge time length multiple 2)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

250

250

www.picaxe.com

tune

Syntax:

TUNE pin, speed, (note, note, note...)
TUNE pin, speed, LED_mask, (note, note, note...) (M2 parts only)
TUNE LED_option, speed, (note, note, note...) (8 pin only)
- pin is a variable/constant which specifies the i/o pin to use (not available on

8 pin devices, which are fixed to output 2).

- speed is a variable/constant (1-15) which specifies the tempo of the tune.

- notes are the actual tune data generated by the Tune Wizard.

- LED_mask (M2 parts only) is a variable/constant which specifies if other

PICAXE outputs (on the same port as the piezo) flash at the same time as the

tune is being played. For example use %00000011 to flash output 0 and 1.

- LED_option (08M/08M2 only) is a variable/constant (0 -3) which specifies if

other 8pin PICAXE outputs flash at the same time as the tune is being played.

0 - No outputs

1 - Output 0 flashes on and off

2 - Output 4 flashes on and off

3 - Output 0 and 4 flash alternately

Function:

Plays a user defined musical tune .

Information:

The tune command allows musical ‘tunes’ to be played.

Playing music on a microcontroller with limited memory will never have the

quality of commercial playback devices, but the tune command performs

remarkably well. Music can be played on economical piezo sounders (as found in

musical birthday cards) or on better quality speakers.

The following information gives technical details of the note encoding process.

However most users will use the ‘Tune Wizard’ to automatically generate the tune

command, by either manually sequentially entering notes or by importing a

mobile phone ring tone. Therefore the technical details are only provided for

information only – they are not required to use the Tune Wizard.

Note that the tune command compresses the data, but the longer the tune the

more memory that will be used. The ‘play’ command does not use up memory in

the same way, but is limited to the 4 internal preset tunes.

All tunes play on a piezo sounder or speaker, connected to the output pin (must

be output 2 (leg 5) of the 8 pin devices). Some sample circuits are shown later in

this section.

On all 8 pin and all M2 parts other outputs can be enabled to cause them to

‘flash’ in time to the music. The LEDs ‘toggle’ on/off at the end of every note.

		
���

����

		
		

���
����

		

		
		

����
����

		
����
����

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

251

251

www.picaxe.com

Speed:

The speed of music is normally called ‘tempo’ and is

the number of ‘quarter beats per minute’ (BPM).

This is defined within the PICAXE system by

allocating a value of 1-15 to the speed setting.

The sound duration of a quarter beat within the

PICAXE is as follows:

sound duration = speed x 65.64 ms

Each quarter beat is also followed by a silence

duration as follows,

silence duration = speed x 8.20 ms

Therefore the total duration of a quarter beat is:

total duration = (speed x 65.64)

 + (speed x 8.20)

= speed x 73.84 ms

Therefore the approximate number of beats per

minute (bpm) are:

bpm = 60 000 / (speed x 73.84)

A table of different speed values are shown here.

This gives a good range for most popular tunes.

Note that within electronic music a note normally plays for 7/8 of the total note

time, with silence for 1/8. With the PICAXE the ratio is slightly different (8/9)

due to memory and mathematical limitations of the microcontroller.

Speed BPM

1 812

2 406

3 270

4 203

5 162

6 135

7 116

8 101

9 90

10 81

11 73

12 67

13 62

14 58

15 54

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

252

252

www.picaxe.com

.

Musical note Byte.017 6 5 4 3 2

Note (0 - 12)

Octave (0 - 2)

Duration (0 - 3)

Note Bytes:

Each note byte is encoded into 8 bits as shown. The encoding is optimised to

ensure the most common values (1/4 beat and octave 6) both have a value of 00.

Note that as the PICAXE also performs further optimisation on the whole tune,

the length of the tune will not be exactly the same length as the number of note

bytes. 1/16, 1/32 and ‘dotted’ notes are not supported.

76 = Duration 54 = Octave 3210 = Note

00 = 1/4 00 = Middle Octave (6) 0000 = C

01 = 1/8 01 = High Octave (7) 0001 = C#

10 = 1 10 = Low Octave (5) 0010 = D

11 = 1/2 11 = not used 0011 = D#

0100 = E

0101 = F

0110 = F#

0111 = G

1000 = G#

1001 = A

1010 = A#

1011 = B

11xx = Pause

 C5 D5 E5 F5 G5 A5 B5

 C5# D5# F5# G5# A5#

 C6 D6 E6 F6 G6 A6 B6

 C6# D6# F6# G6# A6#

 C7 D7 E7 F7 G7 A7 B7

 C7# D7# F7# G7# A7#

Piano Representation of Note Frequency

C5 = 262 Hz

C5# = 277 Hz

D5 = 294 Hz

D5# = 311 Hz

E5 = 330 Hz

F5 = 349 Hz

F5# = 370 Hz

G5 = 392 Hz

G5# = 415 Hz

A5 = 440 Hz

A5# = 466 Hz

B5 = 494 Hz

C6 = 523 Hz ("Middle C")

C6# = 554 Hz

D6 = 587 Hz

D6# = 622 Hz

E6 = 659 Hz

F6 = 698 Hz

F6# = 740 Hz

G6 = 784 Hz

G6# = 831 Hz

A6 = 880 Hz

A6# = 932 Hz

B6 = 988 Hz

C7 = 1047 Hz

C7# = 1109 Hz

D7 = 1175 Hz

D7# = 1245 Hz

E7 = 1318 Hz

F7 = 1396 Hz

F7# = 1480 Hz

G7 = 1568 Hz

G7# = 1661 Hz

A7 = 1760 Hz

A7# = 1865 Hz

B7 = 1975 Hz

Octave 5 Octave 6 Octave 7

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

253

253

www.picaxe.com

PICAXE Tune Wizard

The Tune Wizard allows musical

tunes to be created for the

PICAXE. Tunes can be entered

manually using the drop-down

boxes if desired, but most users

will prefer to automatically import

a mobile phone monophonic

ringtone. These ringtones are

widely available on the internet in

RTTTL format (used on most

Nokia phones). Note the PICAXE

can only play one note at a time

(monophonic), and so cannot use

multiple note (polyphonic)

ringtones.

There are approximately 1000 tunes for free download on the software page of

the www.picaxe.co.uk website.

To start the Tune Wizard click the PICAXE>Wizard>Tune Wizard menu.

The easiest way to import a ringtone from the internet is to find the tune on a

web page. Highlight the RTTTL version of the ringtone in the web browser and

then click Edit>Copy. Move back to the Tune Wizard and then click Edit>Paste

Ringtone.

To import a ringtone from a saved text file, click File>Import Ringtone.

Once the tune has been generated, select whether you want outputs 0 and 4 to

flash as the tune plays (from the options within the ‘Outputs’ section).

The tune can then be tested on the computer by clicking the ‘Play’ menu (if your

computer is fitted with soundcard and speakers). The tune played will give a

rough idea of how the tune will sound on the PICAXE, but will differ slightly due

to the different ways that the computer and PICAXE generate and playback

sounds. On older computers the tune generation may take a couple of seconds as

generating the tune is very memory intensive.

Once your tune is complete click the ’Copy’ button to copy the tune command to

the Windows clipboard. The tune can then be pasted into your main program.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

254

254

www.picaxe.com

Tune Wizard menu items:

File New Start a new tune

Open Open a previously saved tune

Save As Save the current tune

Import Ringtone Open a ringtone from a text file

Export Ringtone Save tune as a ringtone text file

Export Wave Save tune as a Windows .wav sound file

Close Close the Wizard

Edit Insert Line Insert a line in the tune

Delete Line Delete the current line

Copy BASIC Copy the tune command to Windows clipboard

Copy Ringtone Copy tune as a ringtone to Windows clipboard

Paste BASIC Paste tune command into Wizard

Paste Ringtone Paste ringtone into Wizard

Play Play the current tune on the computer’s speaker

Help Help Start this help file.

Ring Tone Tips & Tricks:

1. After generating the tune, try adjusting the tempo by increasing or decreasing

the speed value by 1 and listening to which ‘speed’ sounds best.

2. If your ringtone does not import, make sure the song title at the start of the

line is less than 50 characters long and that all the text is saved on a single

line.

3. Ringtones that contain the instruction ‘d=16’ after the description, or that

contain many notes starting with 16 or 32 (the odd one or two doesn’t

matter) will not play correctly at normal speed on the PICAXE. However they

may sound better if you double the PICAXE processor speed by using a

‘setfreq m8’ command before the tune command.

4. The PICAXE import filters ‘round-down’ dotted notes (notes ending with ‘.’).

You may wish to change these notes into longer notes after importing.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

255

255

www.picaxe.com

Sound Circuits for use with the play or tune command.

The simplest, most economical, way to play the tunes is to use a piezo

sounder. These are simply connected between the output pin (e.g. pin

2 (leg 5) of the PICAXE-08M2) and 0V (see circuits below).

The best piezo sound comes from the ’plastic cased’ variants. Uncased

piezos are also often used in schools due to their low cost, but the

‘copper’ side will need fixing to a suitable sound-board (piece of card,

polystyrene cup or even the PCB itself) with double sided tape to

amplify the sound.

For richer sounds a speaker should be used. Once again the quality of

the sound-box the speaker is placed in is the most significant factor for

quality of sound. Speakers can be driven directly (using a series

capacitor) or via a simply push-pull transistor amplifier.

A 40 or 80 ohm speaker can be connected with two capacitors as shown. For an 8

ohm speaker use a combination of the speaker and a 33R resistor in series (to

generate a total resistance of 41R).

The output can also be connected (via a simple RC filter) to an audio amplifier

such as the TBA820M.

The sample .wav sound files in the \music sub-folder of the Programming Editor

software are real-life recordings of tunes played (via a speaker) from the

microcontroller chip.

8�&��

��

8�&��

��

�

���%��$�
%4�� "��(��

��5�

�
��5�

8�&��

��

6%��52�%
��"*�3������&� ��&�

�(�(

8��D%

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

256

256

www.picaxe.com

 Ringing Tones Text Transfer Language (RTTTL) file format specification

<name> <sep> [<defaults>] <sep> <note-command>+

<name> := <char>+ ; max length 10 characters PICAXE accepts up to 50

<sep> := “:”

<defaults> :=

<def-note-duration> |<def-note-scale> |<def-beats>

<def-note-duration> := “d=” <duration>

<def-note-octave> := “o=” <octave>

<def-beats> := “b=” <beats-per-minute>

; If not specified, defaults are

; duration = 4 (quarter note)

; octave = 6

; beats-per-minute = 63 (decimal value) PICAXE defaults to 62

<note-command> :=

[<duration>] <note> [<octave>] [<special-duration>] <delimiter>

<duration> :=

”1" | ; Full 1/1 note

”2" | ; 1/2 note

”4" | ; 1/4 note

”8" | ; 1/8 note

”16" | ; 1/16 note Not used – PICAXE changes to 8

”32" | ; 1/32 note Not used – PICAXE changes to 8

<note> :=

”C” |

”C#” |

”D” |

”D#” |

”E” |

”F” |

”F#” |

”G” |

”G#” |

”A” |

”A#” |

”B” | ; “H” can also be used PICAXE exports using B

“P” ; pause

<octave> :=

”5" | ; Note A is 440Hz

”6" | ; Note A is 880Hz

”7" | ; Note A is 1.76 kHz

”8" ; Note A is 3.52 kHz Not used - PICAXE uses octave 7

<special-duration> :=

”.” ; Dotted note Not used - PICAXE rounds down

<delimiter> := “,”

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

257

257

www.picaxe.com

uniin

Syntax:

UNIIN pin, device, command, (var, var...)
UNIIN pin, device, command, address, address, (var, var...)
- pin is a variable/constant which specifies the i/o pin to use.

- device is the UNI/O type, %10100000 for EEPROM devices

- command is the read type command, either

UNI_READ Read from specified address

UNI_CRRD Read from current address

UNI_RDSR Read status byte

- address is the optional 2 byte address, only used by UNI_READ

- variable receives the data.

e.g.

uniin C.3, %10100000, UNI_RDSR, (b1)

uniin C.3, %10100000, UNI_CRRD, (b1,b2,b3)

uniin C.3, %10100000, UNI_READ, 0, 1, (b1,b2,b3)

Function:

Read data from the UNI/O device into the PICAXE variable.

Information:

The ‘uniin’ command allows data to be read in from an external UNI/O part such

as the 11LCxxx series EEPROM chips. UNI/O parts only require one i/o pin to

connect to the PICAXE microcontroller. A 4k7 pullup resistor is not required by

the UNI/O specification, but is highly recommended.

This command cannot be used on the following pins due to silicon restrictions:

20X2 C.6 = fixed input

Example:

Please see the uniout command overleaf.

		
		
		
		
		

		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

��

��

8
��

�
�
'

�()

��

��

��

��

�
.
��
�=

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

258

258

www.picaxe.com

uniout

Syntax:

UNIOUT pin, device, command
UNIOUT pin, device, command, (data)
UNIOUT pin, device, command, address, address, (data, data...)
- pin is a variable/constant which specifies the i/o pin to use.

- device is the UNI/O type, %10100000 for EEPROM devices

- command is the write type command, either

UNI_WRITE write

UNI_WREN write enable

UNI_WRDI write disable

UNI_WRSR write status

UNI_ERAL erase all

UNI_SETAL set all

- address is the 2 byte address required by UNI_WRITE

- data is the information to write

e.g.

uniout C.3, %10100000, UNI_ERAL

uniout C.3, %10100000, UNI_SETAL

uniout C.3, %10100000, UNI_WREN

uniout C.3, %10100000, UNI_WRSR, (%0011)

uniout C.3, %10100000, UNI_WRITE, 0, 1, (b1)

uniout C.3, %10100000, UNI_WRDI

Function:

Write data to the UNI/O device. Note that the UNI/O parts have a 16 byte page

boundary. A single write cannot go over a page boundary (ie a multiple of 16).

This means, for instance, you may write 10 bytes in one UNI_WRITE command

from address 0 up, but not 10 bytes from address 10 upwards, as this would

overlap a page boundary (byte 16).

Information:

The ‘uniout’ command allows data to be written to an external UNI/O part such

as the 11LCxxx series EEPROM chips. UNI/O parts only require one i/o pin to

connect to the PICAXE microcontroller.

A 4k7 pullup resistor is not technically required by the UNI/O specification, but

is highly recommended.

Note that when first powered up (after a power-on or brown out reset) the

UNI/O device is in a special low-power standby mode. It is necessary to ‘wake’

the device, via a rising edge pulse (using the pulsout command), before the uniin

/ uniout commands will function correctly.

This command cannot be used on the following pins due to silicon restrictions:

20X2 C.6 = fixed input

		
		
		
		
		

		
		
		

		
		
		

����

		
		

����

		
		

		
		

����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

259

259

www.picaxe.com

Example:

reset_uni:

pulsout C.3, 1 ; ESSENTIAL - enable device

; via a rising edge pulse

main:

inc b1

uniout C.3, %10100000, UNI_WRSR, (0) ; clear status

uniout C.3, %10100000, UNI_WREN ; write enable

uniout C.3, %10100000, UNI_WRITE, 0, 1, (b1) ; write

pause 10 ; wait for write

uniout C.3, %10100000, UNI_WRDI ; write disable

pause 1000 ; wait

uniin C.3, %10100000, UNI_READ, 0, 1, (b2) ; read

debug ; display

goto main ; loop

��

��

8
��
�
�
'

�()

��

��

��

��

�
.
��
�=

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

260

260

www.picaxe.com

wait

Syntax:

WAIT seconds
- Seconds is a constant (1-65) which specifies how many seconds to pause.

Function:

Pause for some time in whole seconds.

Information:

This is a ‘pseudo’ command designed for use by younger students It is actually

equivalent to ‘pause * 1000’, ie the software outputs a pause command with a

value 1000 greater than the wait value. Therefore this command cannot be used

with variables. This command is not normally used outside the classroom.

Example:

main:

switch on B.7 ; switch on output B.7

wait 5 ; wait 5 seconds

switch off B.7 ; switch off output B.7

wait 5 ; wait 5 seconds

goto main ; loop back to start

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

261

261

www.picaxe.com

write

Syntax:

WRITE location,data ,data, WORD wordvariable...
- Location is a variable/constant specifying a byte-wise address (0-255).

- Data is a variable/constant which provides the data byte to be written. To use a

word variable the keyword WORD must be used before the wordvariable.

Function:

Write byte data content into data memory.

Information:

The write command allows byte data to be written into the microcontrollers data

memory. The contents of this memory is not lost when the power is removed.

However the data is updated (with the EEPROM command specified data) upon

a new download. To read the data during a program use the read command.

With the PICAXE-08, 08M, 08M2, 14M, 18, 18M and 18M2 the data memory is

shared with program memory. Therefore only unused bytes may be used within a

program. To establish the length of the program use ‘Check Syntax’ from the

PICAXE menu. This will report the length of program. See the EEPROM

command for more details.

When word variables are used (with the keyword WORD) the two bytes of the

word are saved/retrieved in a little endian manner (ie low byte at address, high

byte at address + 1)

Example:

main:

for b0 = 0 to 63 ; start a loop

serin C.6,N2400,b1 ; receive serial value

write b0,b1 ; write value of b1 into b0

next b0 ; next loop

��
���

����

���
���
����
����

���
����
����

��
���
���

����
���

���
����

���
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

262

262

www.picaxe.com

writemem

Syntax:

WRITEMEM location,data
- Location is a variable/constant specifying a byte-wise address (0-255).

- Data is a variable/constant which provides the data byte to be written.

Function:

Write FLASH program memory byte data into location.

Information:

The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the

writemem command provides an additional 256 bytes storage in a second data

memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external

EEPROM can be used.

The writemem command is byte wide, so to write a word variable two separate

byte write commands will be required, one for each of the two bytes that makes

the word (e.g. for w0, read both b0 and b1).

Example:

main:

for b0 = 0 to 255 ; start a loop

serin 6,N2400,b1 ; receive serial value

writemem b0,b1 ; write value of b1 into b0

next b0 ; next loop

		
		
		
		
		

		
		
		

���
		
		
		

		
		
		

		
		

		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

263

263

www.picaxe.com

writei2c

This command is deprecated, please consider using the hi2cout command instead.

Syntax:

WRITEI2C location,(variable,...)
WRITEI2C (variable,...)
- Location is a variable/constant specifying a byte or word address.

- Variable(s) contains the data byte(s) to be written.

Function:

The writei2c (i2cwrite also accepted by the compiler) command writes variable

data to the i2c location.

Information:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to write byte data to an i2c device. Location defines the

start address of the data to be written, although it is also possible to write more

than one byte sequentially (if the i2c device supports sequential writes).

Location must be a byte or word as defined within the i2cslave command. An

i2cslave command must have been issued before this command is used.

Example:

; Example of how to use DS1307 Time Clock

; Note the data is sent/received in BCD format.

; Note that seconds, mins etc are variables that need

; defining e.g. symbol seconds = b0 etc.

; set DS1307 slave address

i2cslave %11010000, i2cslow, i2cbyte

;write time and date e.g. to 11:59:00 on Thurs 25/12/03

start_clock:

let seconds = $00 ; 00 Note all BCD format

let mins = $59 ; 59 Note all BCD format

let hour = $11 ; 11 Note all BCD format

let day = $03 ; 03 Note all BCD format

let date = $25 ; 25 Note all BCD format

let month = $12 ; 12 Note all BCD format

let year = $03 ; 03 Note all BCD format

let control = %00010000 ' Enable output at 1Hz

writei2c 0,(seconds,mins,hour,day,date,month,year,control)

 end

		
		
		

		
		
		

����
���

		
���
����
����

���
����
����

		
����

		
����
����

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

264

264

www.picaxe.com

Appendix 1 - Commands

adcconfig

backward, bcdtoascii, bcdtobin, bintoascii, bintobcd, booti2c, branch, button

calibadc, calibadc10, calibfreq, call, case, clearbit, compsetup, count

daclevel, dacsetup, data, debug, dec, disablebod, disabletime, disconnect, do,

doze

eeprom, else, elseif, enablebod, enabletime, end, endif, endselect, exit

for, forward, fvrsetup

get, gosub, goto

halt, hi2cin, hi2cout, hi2csetup, hibernate, high, hintsetup, hpwm, hpwmduty,

hpwmout, hserin, hserout, hsersetup, hshin, hshout, hspiin, hspiout, hspisetup

i2cread, i2cslave, i2cwrite, if, inc, infrain, infrain2, infraout, input, inputtype, irin,

irout

kbin, kbled, keyin, keyled

let, lookdown, lookup, loop, low

nap, next

on, output, owin, owout

pause, pauseus, peek, peeksfr, play, poke, pokesfr, pullup, pulsin, pulsout, put,

pwm, pwmduty, pwmout

random, read, readadc, readadc10, readdac, readdac10, readfirmware, readi2c,

readinternaltemp, readmem, readoutputs, readowclk, readowsn, readpinsc,

readportc, readrevision, readsilicon, readtable, readtemp, readtemp12, reconnect,

reset, resetowclk, restart, resume, return, reverse, rfin, rfout, run

select, sensor, serin, serout, serrxd, sertxd, servo, servopos, setbit, setfreq, setint,

setintflags, settimer, shiftin, shiftout, shin, shout, sleep, sound, spiin, spiout,

srlatch, srreset, srset, step, stop, suspend, swap, switch, switchoff, switchon,

symbol

table, tablecopy, tmr3setup, toggle, togglebit, touch, touch16, tune

uniin, uniout, until

wait, while, write, writei2c, writemem

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

265

265

www.picaxe.com

Appendix 2 - Additional (non-command) reserved words

a, a.0-a.7, adcsetup, adcsetup2, and, andnot, atan

b, b.0-b.7, b0-b55, b300_4, b300_8, b300_16, b300_20, b300_32, b300_40,

b300_64, b600_4, b600_8, b600_16, b600_20, b600_32, b600_40, b600_64,

b1200_4, b1200_8, b1200_16, b1200_20, b1200_32, b1200_40, b1200_64,

b2400_4, b2400_8, b2400_16, b2400_20, b2400_32, b2400_40, b2400_64,

b4800_4, b4800_8, b4800_16, b4800_20, b4800_32, b4800_40, b4800_64,

b9600_4, b9600_8, b9600_16, b9600_20, b9600_32, b9600_40, b9600_64,

b14400_4, b14400_8, b14400_16, b14400_20, b14400_32, b14400_40,

b14400_64, b19200_4, b19200_8, b19200_16, b19200_20, b19200_32,

b19200_40, b19200_64, b28800_4, b28800_8, b28800_16, b28800_20,

b28800_32, b28800_40, b28800_64, b31250_4, b31250_8, b31250_16,

b31250_20, b31250_32, b31250_40, b31250_64, b38400_4, b38400_8,

b38400_16, b38400_20, b38400_32, b38400_40, b38400_64, b57600_4,

b57600_8, b57600_16, b57600_20, b57600_32, b57600_40, b57600_64,

b76800_4, b76800_8, b76800_16, b76800_20, b76800_32, b76800_40,

b76800_64, b115200_4, b115200_8, b115200_16, b115200_20, b115200_32,

b115200_40, b115200_64, bit, bit0-bit31, bptr, bptr0-bptr7, @bptr, @bptrdec,

@bptrinc

c, c.0-c.7, clear, cls, compflag, compvalue, cos, cr

d, d.0-d.7, dcd, dig, dir0-dir7, dira.0-dira.7, dirb.0-dirb.7, dirc.0-dirc.7, dird.0-

dird.7, dirs, dirsa, dirsb, dirsc, dirsd

em4, em8, em16, em20, em32, em40, em64

flag0-flag15, flags, flagsh, flagsl, fvr1024, fvr2048, fvr4096

hi2cflag, hi2clast, hint0flag, hint1flag, hint2flag, hintflag, hserflag, hserinflag,

hserinptr, hserptr

i2cbyte, i2cfast, i2cfast_4, i2cfast_8, i2cfast_16, i2cfast_20, i2cfast_32, i2cfast_40,

i2cfast_64, i2cfast4, i2cfast8, i2cfast16, i2cfast20, i2cfast32, i2cfast40, i2cfast64,

i2cmaster, i2cslow, i2cslow_4, i2cslow_8, i2cslow_16, i2cslow_20, i2cslow_32,

i2cslow_40, i2cslow_64, i2cslow4, i2cslow8, i2cslow16, i2cslow20, i2cslow32,

i2cslow40, i2cslow64, i2cword, infra, input0-input7, inv, is, it_5v0, it_4v5,

it_4v0, it_3v5, it_3v3, ir_3v0, ir_raw_h, it_raw_l

k31, k62, k125, k250, k500, keyvalue

lf, lsbfirst, lsbfirst_h, lsbfirst_l, lsbpost, lsbpost_h, lsbpost_l, lsbpre, lsbpre_h,

lsbpre_l

m1, m2, m4, m8, m16, m32, m64, max, min, mod, msbfirst, msbfirst_h,

msbfirst_l, msbpost, msbpost_h, msbpost_l, msbpre, msbpre_h, msbpre_l

n300, n300_4, n600, n600_4, n600_8, n1200, n1200_4, n1200_8, n2400,

n2400_4, n2400_8, n2400_16, n4800, n4800_4, n4800_8, n4800_16,

n4800_32, n9600, n9600_8, n9600_16, n9600_32, n9600_64, n19200,

n19200_16, n19200_32, n19200_64, n38400, n38400_32, n38400_64, n76800,

n76800_64, nand, ncd, nob, nor, not

off, or, ornot, outpin0-outpin7, outpina.0-outpina.7, outpinb.0-outpinb.7,

outpinc.0-outpinc.7, outpind.0-outpind.7, outpins, outpinsa, outpinsb, outpinsc,

outpinsd, output0-output7, ownoreset, ownoreset_bit, owresetafter,

owresetafter_bit, owresetbefore, owresetbefore_bit, owresetboth,

owresetboth_bit, owresetfirst, owresetfirst_bit

pin0-pin7, pina.0-pina.7, pinb.0-pinb.7, pinc.0-pinc.7, pind.0-pind.7, pins,

pinsa, pinsb, pinsc, pinsd, port, porta, portb, portc, portd, pot, ptr, ptr0-ptr15,

ptrh, ptrl, @ptr, @ptrdec, @ptrincpwmdiv16, pwmdiv4, pwmdiv64, pwmfull_f,

pwmfull_r, pwmhalf, pwmhhhh, pwmhlhl, pwmlhlh, pwmllll, pwmsingle

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

266

266

www.picaxe.com

rev

s_w0-s_w7, sensor, set, sin, spifast, spimedium, spimode00, spimode00e,

spimode01, spimode01e, spimode10, spimode10e, spimode11, spimode11e,

spislow, sqr, step

t300, t300_4, t600, t600_4, t600_8, t1200, t1200_4, t1200_8, t2400, t2400_4,

t2400_8, t2400_16, t4800, t4800_4, t4800_8, t4800_16, t4800_32, t9600,

t9600_8, t9600_16, t9600_32, t9600_64, t19200, t19200_16, t19200_32,

t19200_64, t38400, t38400_32, t38400_64, t76800, t76800_64, t1s_4, t1s_8,

t1s_16, t1s_20, t1s_32, t1s_40, t1s_64, task, then, time, timer, timer3, to, toflag,

trisc

uni_crrd, uni_eral, uni_rdsr, uni_read, uni_setal, uni_wrdi, uni_wren, uni_write,

uni_wrsr, until

w0-w27, while, word

xnor, xor, xornot

Appendix 3 - Reserved Labels

The following labels have special meanings and are reserved for use with that

specific purpose only:

interrupt: (interrupts - see setint command)

start0:, start1:, start2:, start3:

start4:, start5:, start6:, start7: (parallel tasks - see restart command)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

267

267

www.picaxe.com

Appendix 4 - Possible Conflicting Commands

Internal Interrupt Driven Event Tasks
Task: Internal Interrupt: Command:

Background serial receive Serial interrupt hsersetup

Background I2C slave mode I2C interrupt hi2csetup

Timer Timer 1 interrupt settimer

Servo Timer 1 & 2 interrupts servo

Timer 3 Timer 3 interrupt tmr3setup

Hardware pin interrupt Hardware pin interrupt hintsetup

Comparator Comparator interrupt compsetup

The PICAXE functions above make use of internal event based interrupt tasks to

process correctly. Internal event tasks temporarily ‘pause’ the main program

processing to process the task as and when it occurs. This is not normally noticed

by the end user as the tasks are fully automated and very quickly processed.

However this system can cause potential issues on timing sensitive commands

such as those using serial or one-wire communication. If the event were to occur

during the timing sensitive command, the command would become corrupt as

the timing would be altered and hence incorrect data would be sent in/out of the

PICAXE chips. Therefore the following commands must temporarily disable all

interrupts whilst processing:

Serial: serin, serout, serrxd, sertxd, debug

One-wire: owin, owout, readtemp, readtemp12, readowsn

UNI/O: uniin, uniout

Infra-red: infraout, irout

Note that other timing commands (e.g. count, pulsin, pulsout etc.) do not

disable the interrupts, but, if active, the hardware interrupt processing time may

affect the accuracy of these commands when they are processed.

The user program must work around this limitation of the microcontroller.

Frequency Dependent Internal Background Tasks
Task: Internal Module: Commands:

PWM Timer 2 & pwm pwmout / hpwm

Background serial receive Serial receive hsersetup

Background I2C slave mode I2C receive hi2csetup

Servo Timer 1 & 2 servo

Timer Timer 1 settimer

Timer 3 Timer 3 tmr3setup

Note that these background tasks are frequency dependent. This has two main

considerations:

1) Servo command cannot be used at the same time as pwm/hpwm/timer, as it

also requires timers 1 and 2.

2) Some M2, X1 and X2 commands such as ‘readtemp’ automatically

temporarily drop to the internal 4MHz resonator to process (to ensure correct

operation of the timing sensitive command). When this occurs the

background tasks may be affected - e.g. a pwmout waveform may temporarily

change to a 4MHz waveform (if still enabled).

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

268

268

www.picaxe.com

Appendix 5 - X2 Variations

Most X2 commands are supported on all of the parts in the X2 range.

However different variants of the PICAXE-X2 range have slightly different features

and memory size. This is due to variants in the base PIC microcontroller used to

generate the PICAXE chip. It is not possible for the PICAXE firmware to change

these differences as they are physical hardware features of the PIC silicon design.

* 32MHz (8MHz resonator with x4 PLL) is recommended for programs using

serial commands as 40MHz is not an even multiple of 8 and so does not produce

valid serial baud rates.

Feature
PICAXE
Command

20X2 28X2
28X2
-5V

28X2
-3V

40X2
40X2
-5V

40X2
-3V

Base PIC micro
(PIC18F series)

14K22 25K22 2520 25K20 45K22 4520 45K20

Voltage Range (V)
1.8-
5.5

2.1-
5.5

4.5-
5.5

1.8-
3.6

2.1-
5.5

4.5-
5.5

1.8-
3.6

PICAXE Firmware
Version Range

C.0+ B.3+ B.0-B.2 B.A-B.C B.3+ B.0-B.2 B.A-B.C

Current (still in
production) part

Yes Yes No No Yes No No

Max Internal Freq (MHz)
Max External Freq (MHz)

setfreq
64
n/a

16
64

8
40*

16
64

16
64

8
40*

16
64

Touch Sensor Support touch No Yes No No Yes No No

ADC Setup
seq. or individual.

adcsetup ind. ind. seq. ind. ind. seq. ind.

Internal ADC reference
(V)

calibadc 1.024 1.024 No 1.2 1.024 No 1.2

Variables RAM
(bytes)

peek, poke
@bptr

128 256 256 256 256 256 256

Scratchpad RAM
(bytes)

put, get
@ptr

128 1024 1024 1024 1024 1024 1024

Internal Program slots
External Program slots

run
1

32
4

32
4

32
4

32
4

32
4

32
4

32

Hardware Interrupt pins hintsetup 2 3 3 3 3 3 3

Pwmout channels pwmout 1 4 2 2 2 2 2

hpwm support hpwm Yes Yes No Yes Yes Yes Yes

power steering mode
within hpwm

hpwm Yes Yes No Yes Yes No Yes

pullups individually
controller

pullup Yes Yes No Yes Yes No Yes

SRlatch, FVR and DAC
modules

srlatch, fvrsetup
dacsetup

Yes Yes No No Yes No No

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

269

269

www.picaxe.com

Appendix 6 - M2 Variations

Most M2 commands are supported on all of the parts in the M2 range.

However different variants of the PICAXE-M2 range have slightly different

features and memory size as shown below. This is due to variants in the base PIC

microcontroller used to generate the PICAXE chip. It is not possible for the

PICAXE firmware to change these differences as they are physical hardware

features of the PIC silicon design.

Feature
PICAXE
Command

08M2 18M2 18M2+ 14M2 20M2

Voltage Range (V)
2.3-
5.5

1.8-
5.5

1.8-
5.5

1.8-
5.5

1.8-
5.5

Memory Capacity (bytes) 2048 2048 2048 2048 2048

Parallel Tasks (starts)
resume,
suspend

4 4 8 8 8

Max Internal Freq (MHz) setfreq 32 32 32 32 32

Variables RAM
(bytes)

peek, poke
@bptr

128 256 512 512 512

Table data
(bytes)

table, readtable
tablecopy

- - 512 512 512

I2C master support
hi2cin, hi2cout
hi2csetup

Yes Yes Yes Yes Yes

Pwmout channels pwmout 1 2 2 4 4

Hpwm support hpwm No No No Yes Yes

Keyboard support kbin, kbled No No Yes Yes Yes

RF radio support rfin, rfout No No Yes Yes Yes

Internal temp. sensor
readinternal-
temp

Yes No Yes Yes Yes

Configurable input type inputtype No No No Yes Yes

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

270

270

www.picaxe.com

Manufacturer Website:

Main website: www.picaxe.com

Forum: www.picaxeforum.co.uk

VSM Simulator: www.picaxevsm.com

PICAXE products are developed and distributed by

Revolution Education Ltd
http://www.rev-ed.co.uk/

Trademark:

PICAXE® is a registered trademark licensed by Microchip Technology Inc.

Revolution Education is not an agent or representative of Microchip

and has no authority to bind Microchip in any way.

Acknowledgements:

Revolution Education would like to thank the following:

Clive Seager

John Bown

LTScotland

Higher Still Development Unit

UKOOA

Mike Meakin of Nikam Electronics who kindly donated the firmware for the

NKM2401 which is used within the rfin and rfout commands and the AXE213

project kit.

	Contents
	Introduction.
	PICAXE Software
	Labels
	Comments
	Constants
	Symbols
	Directives
	Variables - General
	Variables - Storage
	Variables - Scratchpad
	Variables - System
	Variables - Special function
	Variables - Mathematics
	Variables - Unary Mathematics
	Input / Output Pin Naming Conventions
	adcconfig
	adcsetup
	backward
	bcdtoascii
	bintoascii
	booti2c
	branch
	button
	calibadc (calibadc10)
	calibfreq
	clearbit
	compsetup
	count
	daclevel
	dacsetup
	debug
	dec
	disablebod
	disabletime
	disconnect
	do...loop
	doze
	eeprom (data)
	enablebod
	enabletime
	end
	exit
	for...next
	forward
	fvrsetup
	get
	gosub (call)
	goto
	hi2cin
	hi2cout
	hi2csetup
	hi2csetup - slave mode (X2 parts only)
	hi2csetup - master mode
	halt
	hibernate
	high
	high portc
	hintsetup
	hpwm
	hpwmduty
	hserin
	hserout
	hsersetup
	hspiin (hshin)
	hspiout (hshout)
	hspisetup
	i2cslave
	if...then \ elseif...then \ else \ endif
	if...then {goto}
	if...and/or..then {goto}
	if porta...then {goto}
	if portc...then {goto}
	if...then exit
	if...and/or...then exit
	if...then gosub
	if...and/or...then gosub
	inc
	infrain
	infrain2
	infraout
	input
	inputtype
	irin
	irout
	kbin
	keyin
	kbled (keyled)
	let
	let dirs / dirsc =
	let dirsA / dirsB / dirsC / dirsD =
	let pins / pinsc =
	let pinsA / pinsB / pinsC / pinsD =
	lookdown
	lookup
	low
	low portc
	nap
	on...goto
	on...gosub
	output
	owin
	owout
	pause
	pauseus
	peek
	peeksfr
	play
	poke
	pokesfr
	pullup
	pulsin
	pulsout
	put
	pwm
	pwmduty
	pwmout
	random
	read
	readadc
	readadc10
	readdac
	readdac10
	readi2c
	readinternaltemp
	readfirmware
	readmem
	readtable
	readoutputs
	readportc
	readrevision
	readsilicon
	readtemp
	readtemp12
	readowclk
	resetowclk
	readowsn
	reconnect
	reset
	restart
	resume
	return
	reverse
	rfin
	rfout
	run
	select case \ case \ else \ endselect
	serin
	serrxd
	serout
	sertxd
	servo
	servopos
	setbit
	setint
	setintflags
	setfreq
	settimer
	shiftin (spiin)
	shiftout (spiout)
	sleep
	sound
	srlatch
	srset / srreset
	stop
	suspend
	swap
	switch on/off
	symbol
	table
	tablecopy
	tmr3setup
	toggle
	togglebit
	touch
	touch16
	tune
	uniin
	uniout
	wait
	write
	writemem
	writei2c
	Appendix 1 - Commands
	Appendix 2 - Additional (non-command) reserved words
	Appendix 3 - Reserved Labels
	Appendix 4 - Possible Conflicting Commands
	Appendix 5 - X2 Variations
	Appendix 6 - M2 Variations
	Manufacturer Website:
	Trademark:
	Acknowledgements:

