
COMPONENTS 
1) Sensor- 

The input is captured with a magnetic and an hall effect sensor. 
The magnet is mounted on the wheel and the every time the 
magnet crosses the sensor, Arduino recognises the event and 
makes a note of time at which the event took place. Thus 
acquiring 3 time events, the angular velocity and acceleration of 
the wheel can be calculated.   

 

               
(The magnet on the rim)            (Magnet near the hall sensor) 

The sensor used is a A3144 hall effect sensor. This sensor pulls its 
output low when ever it encounters a strong enough magnetic 
field. However it does require a 10k ohm pullup resistor. However 
this resistor is replaced with the integrated 20k ohm resistor of 
the microcontroller. Also the polarity of the magnetic field 
matters and the sensor won’t work if the magnet is placed in the 
wrong orientation. 

 
(Hall Effect Sensor A3144) 

  

The magnet 

Magnet 

Sensor 



 

2) Microcontroller- 

The project is based around the Arduino Nano microcontroller 
with Atmel Atmega328P as the brains of the project.  

 

 

3) The display- 
The display is an a generic Adafruit 128x32 monochrome display. 
The display uses I2C as communication protocol to communicate 
with the microcontroller. 
 

                 
{Display in three modes: 
 a) Just after booting the system, START in the lower right corner indicating the 
system is ready. 
 b) After a ride where the display show the distance travelled (accurate to ≈ 2 
meters) 
 c) The speed at which the cycle is travelling (in km/hr)  }  

  

(The microcontroller and the 
power bank. The Arduino 
receives power from the power 
bank through a USB to Mini USB 
cable) 

 

The iBall PC-2204 power bank as 
the power source with a battery 
capacity of 2200mAh and a 
maximum current draw of 1A. 



4) Power-  
The system does not have a integrated power supply as the 
charging with power outlet would not have been possible and 
adding a dynamo was out of the scope. Hence a simple 
commercial power bank was chosen as it is easy to find one, they 
have descent capacity, can be charged with normal charger, are 
portable and the most importantly, they have a charge controller 
as well as the output is regulated and protected. Hence the 
battery is protected against any circuit flaws which my lead to 
short circuit and thus the chances of fire or explosions in battery 
are zero. 

The power source used for the project is a iBall Power bank 
(Model: PC-2204). The model was chosen as it had geometry for 
which a holder could be easily be made with aluminum strips. 

  



 

5) Fixtures- 

The battery, the hall effect sensor and the tail lights were secured 
on the cycle body with fixtures that were made by bending and twisting 
aluminum strip having a thickness of 1.34mm and a width of 18.59mm. 
The strips were bent in a semicircular shape. Thus, nuts and bolts were 
passed through the strip and secured on the cycle chassis.  

Nut and bolt method was chosen as I did not want to make any 
permanent change to the cycle and with nuts and bolts, the system can 
be easily be removed or modified when needed.  

 

 

 
The fixture used for mounting of tail 
lights along with the nut and the 
flat headed bolt. 

Tail-light and the fixture on 
the frame. 

However, for mounting the display for speed 
and distance, the female headers acted as the 
support for display.  

As these were too small and delicate for screws 
and nuts, they were simply pasted with some 
hot glue. 



CODE 
This program was written on Arduino IDE 

#include <Adafruit_SSD1306.h> 

#include <Wire.h> 

 

#define pi 3.14  

#define brakelight 8 

#define diameter .66 

#define displaychangeafter 5000 

 

#define OLED_RESET 4 

Adafruit_SSD1306 display(OLED_RESET); 

 

const int chipSelect= 9; 

 

int n=0; 

int count=0; 

double instant=0; 

double previnstant=0; 

double prevprevinstant=0; 

int wheelcount=0; 

float velocity=0; 

float accleration=0; 

float distance=0; 

int temp;  

bool unit1=0; 

 

bool unit3=0; 

int unitmillis1=0; 

int unitmillis2=0; 

int unitmillis3=0; 

 

 

 

Arduino libraries for the OLED display 

Assigining values for constants like  π, the 
diameter of the wheel, the digital pin 
connected to the brake light and the time 
after which the display is supposed to 
show the distance instead of the speed 
once the cycle has stopped. 

Declaring global variables 



void setup() 

{ 

  pinMode(2,INPUT_PULLUP); 

  pinMode(brakelight,OUTPUT); 

  attachInterrupt(digitalPinToInterrupt(2),cross,FALLING); 

 

  display.begin(SSD1306_SWITCHCAPVCC , 0x3C); 

  display.setTextColor(WHITE); 

  display.setTextSize(3); 

   

} 

 

void loop() 

{ 

 

  if(0>accleration) 

  { 

    digitalWrite(brakelight,HIGH);    

  } 

   

  if(0<accleration) 

  { 

    digitalWrite(brakelight,LOW); 

  } 

  { 

    if(unit1!=1&&unit2!=1&&unit3!=1) 

    { 

      display.clearDisplay(); 

      display.setCursor(0,0); 

      display.print(velocity*18/5); 

      display.setTextSize(2); 

      display.setCursor(67,18); 

      display.print("km/hr"); 

      display.display(); 

      display.setTextSize(3); 

Setting up the display(font size and colour) 
the brakelight pin and the hall effect sensor 

Checks if the cycle is speeding up or 
slowing down. 

If the cycle is decelerating the brake lights 
will turn on irrespective if the brakes or 
pressed or not. 

Part of code responsible for displaying the 
speed of the cycle. 

The system calculates the speed in  m/s. 

So a constant of 18/5 has to be multiplied 
to get the speed in km/hr. 



      display.display(); 

    } 

    else 

    { 

      display.clearDisplay(); 

      display.setCursor(0,0); 

      display.print(distance); 

      display.setTextSize(1); 

      display.setCursor(90,25); 

      if(distance==0){ 

        display.print("START"); 

      } 

      else{ 

        display.print("meters"); 

      } 

      display.display(); 

      display.setTextSize(3); 

    }     

  } 

 

  if(unitmillis1!=millis()/displaychangeafter+1) 

  {    

    unitmillis1=millis()/displaychangeafter+1; 

    unit1=1; 

  } 

  if(unitmillis2!=millis()/displaychangeafter+2) 

  { 

    unitmillis2=millis()/displaychangeafter+2; 

    unit2=1; 

  } 

  if(unitmillis3!=millis()/displaychangeafter) 

  { 

    unitmillis3=millis()/displaychangeafter; 

    unit3=1; 

  } 

This part of the code is responsible for 
displaying the distance the cycle has travelled 
in the current session.  

The distance is only displayed once the cycle 
has stopped and might take up to 5 seconds 
after the cycle has stopped 

 

The part responsible for counting 5 seconds 
once the cycle has stopped. 



   

} 

 

void cross() 

{ 

 

  prevprevinstant=previnstant; 

  previnstant=instant; 

  instant=micros()/1000.0; 

  wheelcount++; 

 

 

  if(wheelcount>2) 

  { 

    distance=diameter*wheelcount*pi; 

    velocity=diameter/(instant-previnstant)*pi; 

    accleration=2*diameter*pi*(1/(instant-previnstant)-1/(previnstant-prevprevinstant))/(instant-prevprevinstant); 

    velocity=velocity*1000;  

    accleration=accleration*100000000; 

     

    unit3=0; 

    unit2=0; 

    unit1=0;  

      }   

} 

Records the time at which the magnet 
crosses the hall effect sensor. 

Calculates the distance, speed and the 
acceleration based on the data obtained 
above. 

The part which says 5 seconds have not yet 
passed and hence asks the Arduino to 
display speed and not the distace 


