
4
Intermediate operations

Interrupts
So far we have always had to test for certain events ourselves (e.g. test for a
button to be pressed, test if T/C0 has overflowed etc.). Fortunately there are a
number of events which can automatically alert us when they occur. They will,
if correctly set up, interrupt the normal running of the program and jump to a
specific part of the program. These events are called interrupts.

On the 1200, the following interrupts are available:

�9 Interrupt when the INT0 pin (PD2) is low
�9 Interrupt when there is a rising edge on INT0
�9 Interrupt when there is a falling edge on INT0
�9 Interrupt when T/C0 overflows
�9 Interrupt when the Analogue Comparator triggers a result

The first three constitute an external interrupt on INT0, and are mutually exclu-
sive (i.e. you can enable only one of the three interrupts at any one time). The
significance of the Analogue Comparator will be discussed later on in the
chapter. When an interrupt occurs, the program will jump to one of the addresses
at the start of the program. These addresses are given by what is known as the
interrupt vector table. The interrupt vector table for the 1200 is shown in Table
4.1, the tables for the other AVR types are shown in Appendix E.

Table 4.1

Type of Interrupt/Reset Program jumps to address ...

Power-on/Reset
External interrupt on INT0
T/C0 overflow interrupt
Analogue comparator interrupt

0x000
0x001
0x002
0x003

For example, when the T/C0 overflow interrupt is enabled, and T/C0 over-
flows, the program drops what it's doing and jumps to address 0x002 in the
program memory. When using all three interrupts, the start of the program
should look something like the following:

98 Intermediate operations

rjmp Init
rjmp Extlnt
rjmp Overflowlnt
rjmp AClnt

; first line executed
; handles external interrupt
; handles TCNT0 interrupt
; handles A. C. interrupt

This will ensure the program branches to the correct section when a particular
interrupt occurs (we will call these interrupt handling routines). We can enable
individual interrupts using various registers. The enable bit for the External
INT0 interrupt is bit 6 in an I/O register called GIMSK (General Interrupt
Mask). Setting this bit enables the interrupt, clearing it disables it. The enable
bit for the TCNT0 overflow bit is bit 1 in the TIMSK I/O register (Timer
Interrupt Mask). However, all of these interrupts are overridden by an inter-
rupts 'master enable'. This is a master switch which will disable all interrupts
when off, and when on it enables all individually enabled interrupts. This bit is
the I bit in SREG (you may want to glance back to page 73).

The External INT0 interrupt can be set to trigger in one of three different
circumstances, depending on the states of bits 0 and 1 of the MCUCR I/O register
(the one that also holds the sleep settings). This relation is shown in Table 4.2.

Table 4.2

MCUCR
Bitl Bit 0

Interrupt occurs when ...

0 0
0 1
1 0
1 1

INT0 is low
Invalid selection
There is a falling edge on INT0
There is a rising edge on INT0

When an interrupt occurs, the value of the program counter is stored in the
stack as with subroutines, so that the program can return to where it was when
the interrupt handling is over. Furthermore, when the interrupt occurs, the
master interrupt enable bit is automatically cleared. This is so that you don't
have interrupts occurring inside the interrupt handling routine which would
then lead to a mess of recursion. You will probably want to re-enable the master
interrupt bit upon returning from the interrupt handling routine. Fortunately
there is a purpose-built instruction:

reti

This returns from a subroutine and at the same time enables the master inter-
rupt bit.

Each interrupt also has an interrupt flag. This is a flag (bit) that goes high
when an interrupt should occur, even if the global interrupts have been disabled

Intermediate operations 99

and the appropriate interrupt service routine isn't called. If the global interrupts
are disabled (for example, we are already in a different interrupt service routine)
you can test the flag to see if any interrupts have occurred. Note that these flags
stay high until reset, and an interrupt service routine will be called if the flag is
high and the global interrupt bit is enabled. So you must reset all flags before
enabling the global interrupt bit, just in case you have some interrupt flags
lingering high from an event that occurred previously. Interrupt flags are reset
by setting the appropriate b i t - this sounds counterintuitive but it's just the way
things are! The T/C0 Overflow interrupt flag is found in bit 1 of TIFR (Timer
Interrupt Flag Register- I/O number $38), and the INT0 interrupt flag is in bit
6 of GIFR (General Interrupt Flag Register- I/O number $3A).

Program K: reaction tester

�9 Interrupts
�9 Random number generation
�9 Seven segment displays

The next example program will be a reaction tester. A ready button is pressed,
then an LED will turn on a random time later (roughly between 4 and 12
seconds). The user has to press a button when they see the LED turn on. The
program will measure the reaction time of the user and display it in millisec-
onds on three seven segment displays. If the user presses the button before the
LED turns on they will be caught cheating. The circuit diagram for the project
is shown in Figure 4.1, and the flowchart in Figure 4.2.

We will be using the External INT0 and TCNT0 Overflow interrupts, so you
will have to make the necessary changes to the top of the program. Note that as
we will not be using the Analogue Comparator interrupt we don't need any
particular instruction at address 0x003.

EXERCISE 4.1 What are the first three instructions of the program?

Write the Init section, setting T/C0 to count internally at CK/1024. You will
have to enable the External INT0 and T/C0 Overflow interrupts, but don't set
the master enable just yet. Set the External INT0 interrupt to occur when INT0
is low (i.e. when the button is pressed).

EXERCISE 4.2 What are the six lines which individually enable the interrupts?

At Start we first call the Display subroutine, and then test the 'Ready' button
(PinD, 1). Keep looping until the Ready button is pressed.

EXERCISE 4.3 What three lines achieve this?

1~
 ~

-"

IZ
IZ

I
I IZ

IZ
I

I I
ZI

ZI

zz

~
0

G

N
O

V

~

O
N

~
X

z

Intermediate operations 101

Set-up]
I..,
I"

I O"ate iso'a f

I
[Enable interrupts I

,J

YES

I NO

Increment higher
byte

Move "bAd" into
display registers

YES

Store TCNTO value

Convert time into 3
digit number

,~1 Fq

Return without
enabling interrupts

,Es
NO

I Turn on LED
I,Ll-,,
V-l-,q

NO

Return enabling
interrupts

Figure 4.2

The Display subroutine will be almost exactly like the one in the frequency
counter project. The only difference lies in the selection of the correct display.
Instead of rotating between bit 0 and bit 2 of Port D, this part of the subroutine
will have to rotate between bit 4 and bit 6, testing bit 7 to see when it has gone
too far. Make the necessary changes to the subroutine and copy it in. We now
need to create a random time delay.

102 Intermediate operations

Random digression

One of the interesting aspects of this program will be the generation of the
random number to produce a time delay of random length. The most straight-
forward method for generating random numbers is to rely on some human input
and convert this into a number. For example, we could look at the number in
T/C0 when the 'Ready' button is pressed. T/C0, if counting internally, will be
counting up and overflowing continuously, and so its value when the button is
pressed is likely to be random. Very often, however, we don't have the luxury of
a human input, and so we have to generate a string of random numbers. How is
this done? There are a large number of algorithms available for generating
random numbers, varying in complexity. We are restricted in the complexity of
the functions we can straightforwardly apply using AVR assembly language, but
fortunately one of the more simple algorithms relies purely on addition and
multiplication. The Linear Congruential Method developed by Lehmer in 19481
has the following form:

In+ 1 = m o d m (a I n + c)

This generates the next number in the sequence by multiplying the previous
number by a, adding c, and taking the result modulo m. modm(X) is equal to the
remainder left when you divide x by m. Conveniently, the result of every oper-
ation performed in an AVR program is effectively given in modulo 256. For
example, we add 20 to 250. The 'real' answer is 270; however, the result given
is 14. 14 is '270 modulo 256' or mod256(270). There are a number of restric-
tions on the choice of a and c in the above equation that maximize the random-
ness of the sequence (see the reference for more info). Given that the quickest
algorithm is that with the smallest multiplier (a), we will choose a = 5 and c = 1.
You also have to pick a ' s eed ' - the first number in the sequence (I0). You can
set this model up on a spreadsheet and examine its quasirandom properties.
First, you should notice that the randomness of the sequence does not appear
sensitive to the seed; there is therefore no need to pick a particular one. You will
also notice the sequence repeats itself every 256 numbers - this is an unfortu-
nate property of the algorithm. Picking a larger modulus will increase the repe-
tition period accordingly. We could use modulo 65 536 by using one of the
2-byte registers (X, Y or Z) and the adiw instruction. This would result in a
sequence that repeats only every 65 536 numbers! For our purposes with the
reaction tester, a period of 256 is quite acceptable.

To convert this random number into a random time we do the following. The
maximum time is 10 seconds, and the T/C0 will overflow every 256 counts =
256/2400 = 0.066 second. We therefore would like a counter with a value
roughly 61 and 183. You might notice the difference between these numbers is

1 See reference on random numbers in Appendix I.

Intermediate operations 103

not far off 128 (it is in fact 122). Our life is made a lot easier if the difference is
128, so as the times needed are quoted only as approximate figures, we can use
a counter that goes from 60 to 188 which will perform adequately. To convert our
random number between 0 and 255 we first divide by two, then add 60.

Returning to the program, we will use register Random to hold the random
number. We need then to multiply this by five (add it to itself four times), and
then add one to it.

EXERCISE 4.4 What six lines will generate the next random number?

EXERCISE 4.5 What three lines will copy Random into CountX, divide
CountX by two, and then add 60.

We then need to reset the higher byte of the timer (Timelt), turn off the displays
(clear PortB), reset all the interrupt flags, and then set the master interrupt
enable.

EXERCISE 4.6 Which six lines will reset TimeH, PortB and the interrupt flags?

There is a particular instruction for setting the master interrupt enable:

sei ; Sets the interrupt enable bit.

The rest of the program is a loop which just tests the interrupt enable bit, and
loops back to Start when it has been cleared. This is because after an External
INT0 interrupt, the master interrupt bit will not re-enable interrupts and upon
returning the program will loop back to Start. In contrast, after a T/C0 related
interrupt the interrupts will be re-enabled so the program will stay in the loop.

EXERCISE 4.7 What three lines finish off the main body of the program?

Looking first at the T/C0 overflow interrupt handling routine (Tint), we see that
the first test is to see whether or not the LED (PinD, 0) is on. If it is off we
should be timing out the random time to see when to turn it on. If it is already
on we should be incrementing the higher byte of our timing registers (TimeH).
If the time exceeds the maximum that can be displayed on the scope, we should
move '-HI' into the display registers and return without enabling interrupts.

The T/C0 is counting up 2400 times a second (with a register counting the
higher byte as well). We need to convert this to milliseconds (i.e. something
counting 1000 times a second). To do this we can multiply the 2-byte number
by 5 and then divide by 12. Applying the reverse procedure to 999 (the
maximum response time) we get 2397 = 95D. It would be much easier if we
were testing only to see if the higher byte had reached a certain value (e.g. A00).
This is easy to do by resetting T/C0 to 0xA2 when the LED is turned on, and

104 Intermediate operations

then subtract the 0xA2 back off the final answer at the end of the day:

Tint" sbic PinD, 0
rjmp TInt_LEDon

; tests LED
; jumps to different section if on

dec
breq
reti

CountX
PC+2

; decrements random counter
; skips if clear
; returns otherwise

sbi PortD, 0
ldi temp, 0xA2
out TCNT0, temp
reti

; turns on LED when time passes
; initializes TCNT0 to 0xA2
; to facilitate testing for max

Tint LEDon:
inc TimeH ; increments higher byte
cpi TimeH, 0x0A ; tests for maximum time
breq PC+2 ; skips if the user is too slow
reti
ldi Hundreds, 13 ; -
ldi Tens, 14 ; H
ldi Ones, 1 ; I
ret ; returns without setting I-bit

The External INT0 interrupt handling routine is more straightforward- we will
call it Extlnt. This also involves testing the LED first. If it isn't on this means
the user has cheated by pressing the button before the LED has turned on. In
this case, we move numbers 10, 11 and 12 into Hundreds, Tens and Ones
respectively in order to display 'bAd', and then return without re-enabling the
master interrupt bit. If the LED is on, the press is valid, and so we have to halt
the T/C0 and store the current time by moving T/C0 into TimeL. It is possible,
however unlikely, that the T/C0 overflowed just after the INT0 interrupt
occurred. We therefore need to test the T/C0 overflow interrupt flag, and incre-
ment TimeH if it is set. Then the total reaction time (split up over TimeL and
TimeH) needs to have 0xA2 subtracted from it (as this was artificially added).
It must then be multiplied by 5 and divided by 12.

EXERCISE 4.8 Which 12 lines test the LED at the start of Extlnt, test the LED,
jump to a section called Cheat if it isn't on, and halt the T/C0 and store the
current value, incrementing TimeH if necessary? 0xA2 should then be
subtracted from the total reaction time, and T/C0 should be restarted at
CK/1024.

EXERCISE 4.9 Which four lines form the Cheat section?

Intermediate operations 105

After subtracting 0xA2 we need to multiply the time by 5. As the time is split
over two registers we need to use the ade to add a carry to the higher byte if and
when there is a carry:

Times5"

ldi Count4, 4 ; loads a counter with 4
mov temp, TimeL ; stores time in temp and tempH
mov tempH, TimeH ;
add temp, TimeL ; adds TimeL to itself
adc tempH, TimeH ; adds TimeH and Carry to itself
dec Count4 ; does this 4 times
brne Times5

The product is now held over temp and tempH. We then divide the result by 12.
The simplest way to do this is to see how many times we can subtract 12 from
the total.

EXERCISE 4.10 Challenge/What nine lines will first clear TimeL and TimeH,
and then enter a loop which divides the 2-byte number stored between temp and
tempH by 12, leaving the result in TimeL and TimeH. (To skip out of the loop
jump to the DigitConvert section.)

DigitConvert converts the 2-byte number into a three-digit number (this is copied
from the frequency counter with the register names changed accordingly). Instead
of the ret instruction at the end of the section, write rjmp Start.

You will have to set up all the registers (R0-R14) that hold the seven segment
codes in the Init section. Registers R10, R11, R12, R13 and R14 hold the codes
for a 'b', 'A', 'd', '-' and 'H' respectively. You can double check you've done
everything correctly by looking at Program K in Appendix J. It should be quite
fun to try this one out. Of course, the simplest way of using an AVR as a reac-
tion tester is to get a friend to hold it between your fingers and drop it, and then
see how far down the chip you caught it!

Analogue comparator
Another useful feature on most of the AVRs is an analogue comparator (AC)
which compares the voltages on two pins (called AIN0 and AINI = PB0 and
PB1 on the 1200) and changes the state of a bit depending on which voltage is
greater. This is all controlled by the ACSR I/O register, whose bit assignments
are shown in Figure 4.3.

Bit 7 is simply an on/off switch for the AC. You should disable the AC inter-
rupt (clear bit 3) before disabling the AC otherwise an interrupt might occur
when you try to switch it off. Bits 0 and 1 dictate what triggers an AC interrupt
in terms of the AC result (i.e. interrupt when the AC result changes, when it
rises, or when it falls). The remaining bits are self-explanatory.

106 Intermediate operations

ACSR - Analogue Comparator Control and Status Register

Bit no. 7 6 5 4 3 2 1
Bit name A D C - A C O ACI ACIE - AClS1

0
AClS0

I
!1
00 Interrupt on Change

01

10 Interrupt on Falling Edge

11 Interrupt on Rising Edge

0: Disables Analogue Comparator Interrupt
1 Enables AC interrupt

0: Interrupt hasn't occurred
1 Interrupt has occurred

0: Voltage at AIN0 > Voltage at AIN1
1: Voltage at AIN0 < Voltage at AIN1

0: Analogue Comparator On
1' Analogue Comparator Off (lowers power consumption)

Figure 4.3

Program L: 4-bit analogue to digital converter

�9 Analogue comparator

This next project is very much a case of doing what you can with what you
have. Some of the more advanced AVRs have full-blown 10-bit analogue to
digital converters, and so with these the ability to create a 4-bit converter is
clearly of limited value. However, many AVRs don't benefit from this luxury,
being blessed with only a comparator, and in these cases the following program
can be useful. The key to this project is using a summing amplifier to create one

Intermediate operations 107

of 16 possible reference voltages. By running through these reference voltages
and comparing them with the input signal, we can determine the input voltage
with 4-bit resolution and within four cycles of the loop. The circuit diagram is
shown in Figure 4.4, pay particular attention to how the summing amplifier
works. For more information on summing amplifiers, see the reference 2. The
straightforward flowchart is shown in Figure 4.5.

PD0 to PD3 control which reference voltage is being fed to the comparator,
as summarized in Table 4.3.

Table 4.3

0000 0 V 1000 2.5 V
0001 0.312 V 1001 2.812 V
0010 0.625 V 1010 3.125 V
0011 0.937 V 1011 3.437 V
0100 1.25 V 1100 3.75 V
0101 1.562 V 1101 4.062 V
0110 1.875 V 1110 4.375 V
0111 2.187 V 1111 4.687 V

Write the Init section, remembering to turn on the analogue comparator by
setting bit 7 of ACSR. Leave the AC interrupt off. At Start we first set up PortD
with 0b00001000. This sets the most significant bit of the voltage selector and
thus feeds 2.5 V into AIN0. This is then compared with the input at AIN 1. If the
input is higher than the reference, bit 5 of ACSR will be high, otherwise bit 5
will be low. If the input is higher than the reference, the answer is greater than
1000 and so we leave bit 3 of the reference high and set bit 2. If the input is
lower than the reference, the answer is less than 1000 and so we clear bit 3, and
then set bit 2.

EXERCISE 4.11 Write the five lines which set up PortD with the initial value
and then test the AC result. If the AC result is low, clear bit 3 of PortD. In either
case set bit 2 of PortD.

EXERCISE 4.12 Repeat the above for the remaining bits (eight more lines).

EXERCISE 4.13 Challenge! Write the four lines that transfer the resulting state
of PD0-3 to the output bits (PB4-7), and then loop back to Start.

2 See references: Introducing Electronic Systems, M. W. Brimicombe (1997) Nelson Thornes.

_.1

I
---t,

A

O
N
~

O
.

O
_
 JL

Z

.
Q

Intermediate operations 109

I Set~-

Start with 1000

NO

Clear bit and set next bit Set next bit

Figure 4.5

l O-bit analogue to digital conversion (ADC)

Other AVR models such as the Tinyl5, 4433 and 8535 have a built-in 10-bit
A/D converter. This works in much the same way as the 4-bit converter we built
in the previous section, except it is all done for us automatically and internally.
The voltage on one of the analogue input channels is measured (with respect to
the voltage on a reference pin AREF), converted into a 10-bit binary number,
and stored over two I/O registers called ADCL and ADCH (which stand for
ADC Result Lower byte and ADC Result Higher byte). There are two basic
modes of operation: Free Running and Single Conversion. In 'Free Running' the
ADC repeatedly measures the input signal and constantly updates ADCL and
ADCH. In 'Single Conversion' the user must initiate every AD conversion
themselves.

For the 4433 and 8535, the pin being read is selected using the I/O register
called ADMUX ($07). The bit assignment is shown in Table 4.4, all other bits
are not used.

If you want to test a number of channels, you can change the ADMUX
register, and the channel will be changed immediately, or, if an AD conversion
is in progress, after the conversion completes. This means you can scan through
channels in 'Free Running' mode more easily, as you can change the channel
during one conversion, and the next conversion will be on the new channel.

The rest of the ADC settings are held in the ADCSR (ADC Status Register),
I/O register $06. The bit assignments are shown in Figure 4.6.

110 Intermediate operations

Table 4.4

ADMUX bits 2,1,0 Analogue input

000 Channel 0 (PA0)
001 Channel 1 (PAl)
010 Channel 2 (PA2)
011 Channel 3 (PA3)
100 Channel 4 (PA4)
l 01 Channel 5 (PA5)
l 10 Channel 6 (PA6)
111 Channel 7 (PA7)

A D C S R - A D C Status Register ($4)6)

Bit no. 7 6 5 4
Bit name ADEN ADSC ADFR ADIF

Figure 4.6

3 2 1 0
ADIE ADPS2 ADPS1 ADPS0

i
ADO Clock frequency

. . .

000 CK/2

001 CK/2

010 CK/4

011 CK/8

100 CK/16

101 CK/32

110 CK/64

111 CK/128

0: Disables ADC Complete Interrupt
]" Enables ADC Complete Interrupt

0: No ADC Complete Interrupt has occurred
]: The ADC Complete Interrupt has occurred

0: Single Conversion mode
1" Free Running mode

(In "Single Conversion" Mode):
0: AD Conversion has finished
]" Starts a conversion

0: ADC Off (lowers power consumption)
1: ADC On

Intermediate operations 111

Bits 0 to 2 control the frequency of the ADC clock. This controls how long
each conversion takes and also the accuracy of the conversion. A clock between
50 kHz and 200 kHz is recommended for full, 10-bit, accuracy. Frequencies
above 200 kHz can be chosen if speed of conversion is more important than
accuracy. For example, a frequency of 1 MHz gives 8-bit resolution, and 2 MHz
gives 6-bit resolution. The ADC complete interrupt occurs (if enabled) when an
ADC conversion has finished. The other bits are straightforward.

The ADC on the Tiny l 5 is slightly more advanced, offering features such as
internal reference voltages and differential conversion (i.e. measuring the
voltage difference between two pins). Moreover, in the case of the 4433 and
8535 the 10-bit ADC result is stored with the lower byte in ADCL and the
remaining two msb's in ADCH. In the case of the Tiny l 5, you have the choice
between this arrangement, and storing the upper byte in ADCI-I and the
remaining two lsb's in ADCL. These changes all take place in the ADMUX
register, shown in Figure 4.7.

Looking at bits 0 to 2 again, we see the option to look at the voltage differ-
ence between pins, namely ADC2 (PB3) and ADC3 (PB4). These inputs are put
through a differential amplifier, and then measured using the ADC. The differ-
ential amplifier can either have a gain of x l or x20. You will notice that two of
the settings give the difference between ADC2 and itsel~ This is used for cali-
bration purposes, as the differential amplifier used in the difference setting will
have a small offset. By measuring this offset and subtracting from the answer of
your real difference measurement, you will improve the accuracy of your result.

Another handy feature if you are interested in a high accuracy conversion is
to send the chip to sleep and perform an AD conversion whilst in sleep. This
helps eliminate noise from the CPU (central processing unit) of the chip. An
ADC complete interrupt can then be used to wake up the chip from sleep. This
method is demonstrated in Example 4.1.

Example 4.1

Idi
out
Idi
out
sleep

temp, 0bl0001011 ; enables ADC, Single Conversion
ADCSR, temp ; enables AD Complete Interrupt
temp, 0b00101000 ; enables sleep,
MCUCR ; 'AD Low Noise mode'

; goes to s l e e p - this automatically
; starts AD Conversion

When the AD conversion completes, the AD conversion interrupt routine will
be called (address $008 on the Tinyl 5, and address $00E on the 4433 or 8535),
when the program returns from the routine it will carry on from the line after
the sleep instruction.

112 Intermediate operations

A D M U X - ADC Multiplexer ($07)

Bit no. 7 6
Bit name REFS1 REFS0

5 4 3 2 1
ADLAR - - M U X 2 MUX1

0
M U X 0

I
300

D01

D10

311

100

101

110

111

ADC0 (PB5)

ADC 1 (PB2)

ADC2 (PB3)

ADC3 (PB4)

ADC2 - ADC2

ADC2 - ADC2

ADC2 - ADC3

ADC2 - ADC3

x l

x20

x l

x20

ADC Left Adjust Result:
0: Lower byte of result in ADCL, 2 msb's in ADCH
1" Higher byte of result in ADCL, 2 Isb's in ADCL

00

01

10

Vcc is reference voltage

AREF (PBO)is reference voltage

Internal reference (2.56V)

Internal reference (2.56V) with smoothing capacitor at PB0

Figure 4.7

Program M" voltage inverter

�9 Analogue to digital conversion
�9 Digital to analogue conversion

We can use ADCs to make digital to analogue converters. The trick to this is to
use the output to charge up a capacitor until it reaches the required output
voltage. The AVR's output then goes open circuit (turns itself into an input). The
capacitor will then slowly discharge through the input impedance of whatever
is reading it, lowering the analogue output. Meanwhile another input is moni-

Intermediate operations 113

toring the voltage of the analogue output. If it falls below a certain mark, the
AVR's output is turned on again to top up the analogue output. To lower the
analogue voltage, the AVR output is cleared to 0 to discharge the capacitor
quickly. Figure 4.8 illustrates this technique, though the jaggedness of the final
output is exaggerated.

PBO

PB2

A A

I I I -- output

I T c

l L_J l_l
~L

~ :

Figure 4.8

R should be made small enough to allow quick response time, and C high
enough to give a smooth output. We will demonstrate this with a project that
takes an input, i, between 0 and 5 V, and outputs (5 - i). For example, 2 V in
becomes 3 V out. The circuit diagram is shown in Figure 4.9, and the flowchart
in Figure 4.10.

In the Init section, we will have to enable A/D conversion, and select ADC0
to start with. We would like maximum accuracy, and so require a clock speed
that is less than 200 kHz. We will be using the internal oscillator which runs at
1.6 MHz. This means that an ADC clock of CK/8 (200 kHz) will be acceptable.
The ADC should be single mode, and set the 'Left Adjust' bit so that the upper
byte of the ADC result is in ADCH and the two lsbs in ADCL. Finally, let Vr162
be the reference voltage, and start an AD conversion.

114 Intermediate operations

�9 , ,,,,,,, ,,,, ,,,

I>
input

A v

U1

PB3/ADC2 PBI /A IN1 1
PB4 /ADC3 PB0/AIN01AREF

ATT INY15 10k /

C1 i i

T lpF
v

-+5V

~>

output

0V

Figure 4.9

Set-up]

,q

I Measure voltage on input I
I

I - input output 5 desired
I

I Measure voltage on output I

NO

I Make PBO 5V [

I: ~

NO

MakePBOOV I I
I-,,

I Make PBO input [
I

I

Figure 4.10

EXERCISE 4.14
the Init section?

What numbers should be moved into ADCSR and ADMUX in

Write the whole of the Init section. Initially make PB0 an output. PB5 and PB2
should be inputs. Once the AVR reaches Start, the ADC0 channel should be

Intermediate operations 115

selected (by clearing ADMUX, bit 0), and an A/D conversion should be started
(by setting ADCSR, bit 6). When the A/D conversion is over, this bit will be
cleared, so we can test this bit and wait for it to set.

EXERCISE 4.15 What four instructions start an A/D conversion on ADC0 and
wait for it to complete?

Once the conversion is complete, the input voltage will be stored in registers
ADCL and ADCH. There is no need for the full 10-bit accuracy, and so we will
simply use 8 bits. With Left Adjust enabled, this simply involves reading the
number from ADCH. To perform the function (5 - input voltage) we simply
invert the result (ones become zeros and vice versa). Invert the results using the
coin instruction, and store the result in a working register called Desired (this
represents the voltage we want on the output).

EXERCISE 4.16 Which s/x instructions store and invert the measurement of the
input voltage, change the input channel to select ADC 1, and start a new conver-
sion? It should also wait in a loop until the current conversion finishes.

Now the voltage on the output has been read and can be compared with the
desired voltage. Save the measured voltage from ADCH into a working register
called Actual (the actual voltage on the output). Then use the compare (cp) and
branch-if-lower (brlo) instructions to jump to sections called TooI-Iigh (the
actual output is higher than the desired output), or TooLow (the actual output is
less than the desired output).

EXERCISE 4.17 Which seven lines perform these tests and branch out as
required? If the actual and desired voltages are equal, PB0 should be made an
input (by clearing DDRB, bit 0) and then the program should jump back to
Start.

The TooHigh section needs to lower the output, and so PB0 is made an output
(by setting DDRB, bit 0) and then made low (0V) to discharge the capacitor and
lower the output. TooLow needs to raise the output, and so PB0 is made an
output and made high (5V) to charge up the capacitor.

EXERCISE 4.18 Write the six lines that make up the TooHigh and TooLow
sections. The end of both sections should jump back to Start.

That wraps up Program M. You may want to experiment a little and make the
device perform more complicated functions on the input, or perhaps on two
inputs. Perhaps you can make some form of audio mixer by summing two input
channels, or subtract the left and right channels of an audio signal to get a
'pseudo-surround sound' output. As you can see, there are a number of inter-

116 Intermediate operations

esting projects that can be based around the above, and all on the little Tiny l 5
chip!

EEPROM

In addition to the RAM and program memory that we have already seen, many
AVRs have an additional memory store which combines the flexibility of RAM,
with the permanence of program memory. Unlike the RAM, the EEPROM will
keep its values when power is removed and unlike the program memory, the
EEPROM can be read and written to while the program runs. EEPROM stands
for Electrically Erasable Read-Only Memory. There are three I/O registers
associated with the EEPROM:

�9 E E A R - The register which holds the address being written to/read from the
EEPROM

�9 E E D R - The register which holds the data to be written to/read from the
EEPROM

�9 E E C R - The register which holds controls the EEPROM
- Set bit 0 of EECR to read from the EEPROM
- Set bit 1 of EECR to write to the EEPROM

The 1200 has 64 bytes of EEPROM, though other AVRs can have much more
(up to 512 bytes). The write operation takes a certain amount of time. To wait
until the writing process is over, test bit 1 of EECR (the one you set to start the
wri te) - when the writing finishes the bit is cleared automatically.

Example 4.2 To write the number 45 to EEPROM address 0x30, we would
write the following:

EEWait:

ldi temp, 0x30 ; sets up address to write to
out EEAR, temp ;
ldi temp, 45 ; sets up data to write
out EEDR, temp ;
sbi EECR, 1 ; initiates write
sbic EECR, 1 ; waits for write to finish
rjmp EEWait ; loops until EECR, 1 is cleared

Example 4.3 To read address 0x14 of the EEPROM we write the following.
At the end of the segment of code, the data held in address 0x14 will be in
EEDR.

ldi temp, 0x14 ; sets up address to read
out EEAR, temp ;
sbi EECR, 0 ; initiates read

; data now held in EEDR

Intermediate operations 117

EXERCISE 4.19 Challenge. t Write a routine which sets up addresses 0x00 to
0x0F of the EEPROM to be an ASCII look-up table. This means address 'n' of
the EEPROM holds the ASCII code for the 'n' character (i.e. the code for
numbers 0-9, A, B, C, D, E and F). The ASCII codes for the relevant characters
are given in Appendix G. The routine should be 14 lines long.

There are two ways to program the EEPROM when you are programming your
chip. In AVR Studio, you can go to View ~ New Memory View (Alt + 4) and
select EEPROM. This will give you a window with EEPROM memory loca-
tions. Simply type in the values you wish to program into the EEPROM, and
when you select the programmer (e.g. STK500), select 'Program EEPROM'
and choose 'Current Simulator/Emulator Memory'. This will load the contents
of the EEPROM window onto the EEPROM of the chip. An easier way is to
specify what you want to write to the EEPROM in your program itself. Use the
.eseg directive (EEPROM segment) to define EEPROM memory. What you
write after that will be written to the EEPROM. If you want to write normal
code after this, you must write .cseg (code segment).

Example 4.4

.eseg

.db

.db

; writes what follows to the EEPROM
0x04, 0x06, 0x07 ;
0x50

.cseg

ldi temp, 45

; writes what follows to the program
; memory

The .db directive stores the byte(s) which follow to memory This particular code
writes 0x04, 0x06, 0x07 and 0x50 to memory locations 00-03 in the EEPROM.
Note that this is not a way to change the EEPROM during the running of the
programming- it is only a way to tell the programmer what to write to the
EEPROM when you are programming the chip. Directives such as .org can be used
to select specific addresses in the EEPROM. On the 1200, which doesn't support
the lpm instruction, it is a better use of resources to store the seven segment look-
up table in the EEPROM, than in registers RO--R10, as previously done.

16-bit timer~counter 1

Some AVRs, such as the 2313, have a separate 16-bit timer/counter in addition
to the 8-bit TCNT0. This is called Timer/Counter 1, and is quite useful as the
need for markers and counters to time natural time lengths becomes greatly
reduced. The number in Timer/Counter 1 (T/C 1) is spread over two I/O regis-
ters: TCNTIH (higher byte) and TCNTIL (lower byte). The T/C1 can be

118 Intermediate operations

prescaled separately to T/C0 (i.e. it can be made to count at a different speed),
and can also be made a counter of signals on its own input pin: T1 (as opposed
to TO which is the T/C0 counting pin). If the T/C1 is counting up at 2400 Hz,
the 16 bits allow us to time up to 27 seconds without the need for any further
counters. One very important point to note with this 2-byte timer/counter is that
when you read T/C 1, the 2 bytes must be read at the same time, otherwise there
is a chance that in between storing the lower and higher bytes, the lower byte
overflows, incrementing the higher byte, which lead to a large error in the stored
answer. In order to do this you must therefore read the lower byte first. When
you read in the TCNTIL, the number in TCNT1H is at the same time auto-
matically stored in an internal TEMP register on board the AVR. When you then
try to read in TCNTIH, the value read is taken from the TEMP register, and not
from TCNT1H. Note that the internal TEMP register is completely separate to
the working register R16 which we often call temp.

Example 4.5
TimeH.

Read Timer/Counter 1 into two working registers, TirneL and

Value in T/C 1
0x28FF in

0x2900 in

TimeL, TCNT1L ; stores FF in TimeL, and stores 0x28
; into the internal TEMP reg.

TimeH, TCNT1H ; copies TEMP into TimeH

Therefore, even ifT/C 1 changes from 0x28FF to 0x2900 in between reading the
bytes, the numbers written to TimeL and TimeH are still 0x28 and 0xFE and
not 0x28 and 0x00.

Similarly, when writing a number to both the higher and lower registers you
must write to the higher byte first. When you try to write a number to
TCNT1H, the AVR stores the byte in the internal TEMP register and then,
when you write the lower byte, the AVR writes both bytes at the same time.

Example 4.6 Write 0x28F7 to the Timer/Counter 1.

ldi
ldi
out

TimeL, 0x28
TimeH 0xF7
TCNTIH, TimeH ; writes 0x28 into internal TEMP reg.

out TCNT1L, TimeL ; writes 0xF7 to TCNT1L and 0x28 into
; TCNT1H at the same time

The T/C 1 has some other 2-byte registers associated with it, such as ICR1H, L
and OCR1AH, L, and they must be written to and read from in the same way
as TCNT1H, L. The functions of these registers are discussed in the next two
sections.

Intermediate operations 119

Input capture
Let's say, for example, that we wish to measure the time until an event occurs
on a certain pin (as we had to do with the frequency counter project). We could
just test the pin and then read the T/C 1 as we did before, but in order to simplify
the program and free up the processor on the chip, we can use a handy feature
that captures the value in T/C 1 for us. The input capture feature automatically
stores the value in T/C 1 into two I/O registers: ICR1H (Input Capture Register
for Timer/Counter 1, Higher byte) and I C R I L (Lower byte) when an event
occurs on the ICP (Input Capture Pin), which is PD6 on the 2313. This event
can be a rising or falling edge. The input capture feature is controlled by an I/O
register called TCCR1B (one of the two Timer Counter 1 Control Registers)-
the other control register for T/C 1 is called TCCR1A and will be discussed in
the next section.

TCCR1B - Timer Counter 1 Control Register B ($2E)

Bit no. 7 6 5 4 3 2
Bit name I C N C l ICES1 - - CTCl CS12

ir
ooo

OOl

OlO

O l l

1 oo

lO l

11o

111

1 0
cs11 C S l 0

i I

STOP! T/C1 is stopped

T/C1 counts at the clock speed (CK)

T/C1 counts at CK/8

T/C1 counts at CK/64

T/C1 counts at CK/256

T/C1 counts at CK/1024

T/C1 counts on falling edge of T1 pin

T/C1 counts on rising edge of T1 pin

/ 1
O: Doesn't reset T/C1 on Compare Match
1" T/C1 is reset to $0000 on Compare Match

1

O: Falling edge on ICP triggers T/C1 capture
1" Rising edge on ICP triggers T/C1 capture

1 (4):
0: Noise Canceller disabled
1: Voltage change on ICP must last at least 4 clock cycles

Figure 4.11

120 Intermediate operations

Bit 7 can be used to make the feature more robust to noise on the ICP pin. If
this feature is enabled, the voltage must rise from logic 0 to 1, for example, and
stay at logic 1 for at least four clock cycles. If the voltage drops back to logic 0
before the four clock cycles have passed, the signal is rejected as a glitch, and
there is no input capture. If you are trying to read signals that will be less than
four clock cycles, you will have to disable this noise cancelling feature (clear
the bit). Bit 3 refers to the output compare function which is introduced in the
next section. There is an input capture interrupt to let us know when an input
capture has occurred. This calls address $003 (on the 2313). The enable bit is
bit 3 of TIMSK.

Example 4.7 Input capturing could be used in a speedometer on a bicycle,
where a magnet would pass by the sensor with every revolution of the wheel.
The speed of the bike could be deduced as a function of the time between each
revolution. The magnetic sensor could be attached to the ICP pin, which would
go high every time the magnet passes over the sensor. We would want to be able
to measure times up to about 1 second, which means prescaling of the CK/256
would be ideal. You may wish to remind yourself of the 2313 interrupt vector
table in Appendix E. The skeleton of a speedometer program is shown below:

rjmp
reti
reti

Init ; address $000
; $001 - not using INT0 interrupt
; $002 - not using INTI interrupt

IC_Int:
in

in
sub
sbc
m o v

m o v

rcall
reti

; $ 0 0 3 - the Input Capture interrupt
temp, ICRL ; stores captured value in working
tempH, ICRH ; registers
temp, PrevL ; finds different between old and new
tempH, PrevH ; values
PrevL, ICRL ; stores new values
PrevH, ICRH ;
DigConvert ; converts two-byte time into digits

Display: etc.
ret

; left for you to write

DigConvert: etc.
ret

; left for you to write

Init: ldi
out

ldi
out

temp, 0b 11000100
TCCR1B, temp
temp, 0b00001000
TIMSK, temp

; enables noise canceller
; T/C1 counts at CK/256
; enables TC interrupt

Intermediate operations 121

sei
etc.

; enables global interrupt
; left for you to write

Start: rcall Display ; keeps updating the displays
rjmp Start ; loops

The display and digit-convert subroutines are not included, but it is expected
that you could write them based on the similar display routines in previous
example projects. Note that the DigConvert subroutine should convert the
number held over temp and templt (i.e. the difference between the two times)
into the digits to be displayed. The remainder of the Init section should also be
completed- this sets up the inputs and outputs. Note that even though we are
not using the interrupts that point to addresses $001 and $002, we still need
instructions for those addresses. We could just use nop (no operation, i.e. do
nothing), but reti is safer. The idea is that if by some unforeseeable error an
INT0 interrupt is triggered, the program will simply return, and no damage will
be done. This is a basic example of defensive programming- i.e. expect the
unexpected.

Output compare

In almost any application of the timer/counters, you are testing to see if the
timer/counter has reached a certain value. Fortunately, all chips with a
'Timer/Counter 1' have a built-in feature which does this automatically. We can
ask the AVR to continually compare the value in T/C1 with a certain 16-bit
value. When T/C1 is equal to this value, an interrupt can occur, or we can
change the state of one of the output pins, and we can also make the T/C 1 reset
(see bit 3 of the TCCRIB register shown on page 119). On the 2313, for
example, the value that is to be compared with T/C1 is stored over two I/O
registers: OCR1AH and OCR1AL (which stand for Output Compare Register
A for T/C1, Higher and Lower bytes respectively). The 'A' is to distinguish
them from a second set of output compare registers (labelled 'B') that are found
in other chips such as the 8515. The 8515, for example, can therefore constantly
compare T/C 1 with two different values. If we wish to use the output compare
feature we will need to enable the Output Compare Interrupt, which occurs
when TCNTIH - O C R 1 A I t and TCNTIL = OCR1AL. The enable bit for
this interrupt is in TIMSK, bit 6. The interrupt address varies between different
models, but for the 2313 the output compare interrupt calls address $004. We
will find the output compare feature very useful in the next project, and in the
next chapter we will see how it can be used for PWM (pulse width modulation).

EXERCISE 4.20 Challenge/If we want an interrupt to occur every second, and
we are using a 4 MHz oscillator, suggest numbers that should be moved into the
following registers: TCCR1B, TIMSK, OCRIAH, OCR1AL.

122 Intermediate operations

Major program N" melody m a k e r

�9 EEPROM
�9 Output compare
�9 Sounds

By driving a speaker at a certain frequency, we can use the AVR to create
musical notes. In fact, using a square wave actually creates a more natural sound
than a sine wave input. This end-of-chapter project will allow the user to
program short melodies into the EEPROM of the chip, and then play them back
through a speaker. The relation between some musical notes and frequencies is
shown in Table 4.5.

Table 4.5

C

128 Hz

F#

181 Hz

C#

136 Hz

G

192 Hz

D

144 Hz

G#

203 Hz

D#

152 Hz

A

215 Hz

E

161 Hz

A#

228 Hz

171 Hz

B

242 Hz

The values for the next highest octave can be obtained by doubling the
frequency. For example, the next 'C' will be at 256 Hz. Assuming we use four
octaves, we can encode the note as the letter (which needs 4 bits) and the octave
number (which needs 2 bits). The length of the note will be encoded in the
remaining 2 bits. Each note in the melody will therefore take up 1 byte of
EEPROM. The 2313 has 128 bytes of EEPROM, which means we can store a
128-note melody. If longer tunes are required, a chip with more EEPROM can
be used instead, such as the 8515. The note will be encoded as shown in Figure
4.12.

Bit no 7 6 5 4 3 2 1 0
, ,

Length Octave Letter

(e.g. C#)

Figure 4.12

Intermediate operations 123

The circuit will simply consist of a speaker attached to PB0 (and the usual
crystal oscillator on XTAL 1 and XTAL2). The AVR can drive a speaker on its
own, as long it has a relatively high impedance (e.g. 64 ohm). If you are using
a lower impedance speaker (e.g. 8 ohm) you might be better off driving it with
a transistor. The flowchart is shown in Figure 4.13; notice how the entire
program is interrupt oriented and the main body of the program will simply be
a loop.

/0 /1

Set-up 1 Toggle State of PB0
,,,

Return

Figure 4.13

I Oecremen' Lenoth reo. I I

<" ,s Leno,h -

I 1
I

Get next note]

YES

" y No

Translate note into
frequency and length

I [Return]

I
Reset EEPROM
a d d r e s s to 0

I

A 'note letter' value between 0x0 and 0xB will correspond to a note between
'C' and 'B'. The value 0xC in the 'note letter' part of the EEPROM byte will
indicate the end of the melody and cause the chip to return to the start of the
melody and repeat it over again. You may want to add extra functionality by
including 0xD in the 'note letter' part of the byte, meaning end the melody and
do not loop back (i.e. just wait until a manual reset), but this is not included in
my version of the program. In the Init section, configure the inputs and outputs,
the timing registers, and the stack pointer register (SPL). Enable the T/C0
Overflow and T/C 1 Output Compare interrupts. The T/C 1 will be used to create
a signal of a certain frequency on the speaker pin, whilst T/C0 will be used to
regulate the length of the note. Therefore, set up T/C0 to count at CK/1024, and
T/C 1 to count at CK. In the Init section you will also have to set up the first note;
call a subroutine Read_EEPROM to do this, we will write the subroutine later.

124 Intermediate operations

At Start: you need only write one instruction which loops back to Start.
Whenever the T/C 1 Output Compare interrupt occurs the output will have to
change state. This simply involves reading in PortB into temp, inverting it, and
then outputting it back into PortB.

EXERCISE 4.21 Write the four lines which make up the T/C 1 Output Compare
interrupt section. Include a link to this section at address $004 in the program
memory.

All that remains is the T/C0 Overflow interrupt section. Length will be a
working register we use to keep track of the length of the note. At the start of
the section, decrement Length. If it isn't zero just return; if it is, skip the return
instruction and carry on. If sufficient time has passed, we need to change the
note, but first there must be a short pause. This pause allows us to repeat the
same note twice without making it sound like a single note played for twice as
long. An easy way to insert a pause is simply to wait for the T/C0 Overflow
interrupt flag to go high again. If it is, skip out of the loop, reset the flag and
move on to the section that reads the next note. Call this section
Read EEPROM.

m

EXERCISE 4.22 Write the eight lines at the start of the T/C0 Overflow interrupt
section. Include a link to this section at address $006.

The Read_EEPROM section copies the number in a working register called
address into EEAR. Read the EEPROM into the ZL register, and mask bits
4-7, selecting the 'note letter' part of the byte. Then compare ZL with the
number 12 (0xC); if it is equal, jump to a section called Reset. If it isn't equal
test to see if it is less than 12 (brlo). If it isn't less (i.e. it is greater than 12) it
is an invalid note letter, and so ZL should be reset to 0x0, for want of a better
note. If it is less than 12, skip that instruction.

EXERCISE 4.23 Write the first eight lines of the Read_EEPROM section.

We will be using ZL to read values from a look-up table in the program memory
(using the lpm instruction). As you may remember, lpm uses the byte address
of the program memory, rather than the word address, so we need to multiply
ZL by two (using the lsl instruction). The look-up table will start at word
address 013. We can ensure this using the .org directive in AVR Studio. This
says 'Let the next instruction be placed at address ... '. Our look-up table starts
as shown below (.dw is the directive which puts the word or words which follow
in the program memory).

.org 13

.dw 0x7A12 ; frequency for C (word address 013)

Intermediate operations 125

.dw 0x7338
etc.

; frequency for C# (word address 014)

We must therefore add 26 to ZL to correctly address the look-up table. Use lpm
to read the lower byte, and move the result from R0 into a working register
called NoteL. Then increment ZL and do the same, moving the result into
NoteH.

EXERCISE 4.24 What seven lines perform this task?

We will need to perform some basic maths to derive the values for the look-up
table. Taking the frequencies of the lowest octave to be played, shown in Table
4.5, and dividing by 4 000 000 (the oscillator frequency) by these values, we get
a set of numbers indicating the numbers with which we wish to compare T/C 1.
To get higher octaves we will simply divide these values by two. My values are
shown in the full version of the program in Appendix J; you may wish to check
them, or else you can simply copy them.

To get the correct octave we again copy EEDR into temp, swap the nibbles,
and then mask bits 2-7, leaving us with the 2 bits we are interested i n - those
that choose the octave. Label the next line GetOetave. First test if the result of
the AND operation just performed is 0; if it is we can just move on to the next
section- GetLength. If it isn't 0, we will divide the number spread over NoteH
and NoteL by two, decrement temp, and then loop back to GetOctave.

EXERCISE 4.25 Write the eight lines that use bits 4 and 5 of the EEPROM byte
to alter the frequency according to a specified octave.

NoteH and NoteL are now ready to be moved into OCRIAH and OCRIAL,
but remember to write the higher byte first. We then read the length, using a
similar method to GetOctave. Again read the EEDR into temp, mask bits 5-0,
swap the nibbles, and rotate once to the right. This places the relevant bits in bits
1 and 2 of temp. This means the number in temp is 0, 2, 4 or 6. This is almost
what we want, and by adding 2 to temp we get 2, 4, 6 or 8. This should be
moved into Length.

EXERCISE 4.26 What nine lines make up the GetLength section and return
from the subroutine, enabling interrupts.

The program is now finished. By programming different values into the
EEPROM when you program the chip, it can be made to produce any tune. You
may find a spreadsheet useful in converting notes, octaves and lengths into the
hex number which represents them. You may also want to look into ways to
input bytes to the EEPROM more easily. For example, you could use an array
of push buttons in a keyboard arrangement, strobing them to lessen the number

126 Intermediate operations

of inputs needed, to input the melody. Another method might involve a seven
segment display to display the note, with a series of buttons to scroll through
the memory and change the note - this would require less skill as a pianist to
enter the tune!

