
4 
Intermediate operations 

Interrupts 
So far we have always had to test for certain events ourselves (e.g. test for a 
button to be pressed, test if T/C0 has overflowed etc.). Fortunately there are a 
number of events which can automatically alert us when they occur. They will, 
if correctly set up, interrupt the normal running of the program and jump to a 
specific part of the program. These events are called interrupts. 

On the 1200, the following interrupts are available: 

�9 Interrupt when the INT0 pin (PD2) is low 
�9 Interrupt when there is a rising edge on INT0 
�9 Interrupt when there is a falling edge on INT0 
�9 Interrupt when T/C0 overflows 
�9 Interrupt when the Analogue Comparator triggers a result 

The first three constitute an external interrupt on INT0, and are mutually exclu- 
sive (i.e. you can enable only one of the three interrupts at any one time). The 
significance of the Analogue Comparator will be discussed later on in the 
chapter. When an interrupt occurs, the program will jump to one of the addresses 
at the start of the program. These addresses are given by what is known as the 
interrupt vector table. The interrupt vector table for the 1200 is shown in Table 
4.1, the tables for the other AVR types are shown in Appendix E. 

Table 4.1 

Type of Interrupt/Reset Program jumps to address ... 

Power-on/Reset 
External interrupt on INT0 
T/C0 overflow interrupt 
Analogue comparator interrupt 

0x000 
0x001 
0x002 
0x003 

For example, when the T/C0 overflow interrupt is enabled, and T/C0 over- 
flows, the program drops what it's doing and jumps to address 0x002 in the 
program memory. When using all three interrupts, the start of the program 
should look something like the following: 
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rjmp Init 
rjmp Extlnt  
rjmp Overflowlnt 
rjmp AClnt  

; first line executed 
; handles external interrupt 
; handles TCNT0 interrupt 
; handles A. C. interrupt 

This will ensure the program branches to the correct section when a particular 
interrupt occurs (we will call these interrupt handling routines). We can enable 
individual interrupts using various registers. The enable bit for the External 
INT0 interrupt is bit 6 in an I/O register called GIMSK (General Interrupt 
Mask). Setting this bit enables the interrupt, clearing it disables it. The enable 
bit for the TCNT0 overflow bit is bit 1 in the TIMSK I/O register (Timer 
Interrupt Mask). However, all of these interrupts are overridden by an inter- 
rupts 'master enable'. This is a master switch which will disable all interrupts 
when off, and when on it enables all individually enabled interrupts. This bit is 
the I bit in SREG (you may want to glance back to page 73). 

The External INT0 interrupt can be set to trigger in one of three different 
circumstances, depending on the states of bits 0 and 1 of the MCUCR I/O register 
(the one that also holds the sleep settings). This relation is shown in Table 4.2. 

Table 4.2 

MCUCR 
Bitl  Bit 0 

Interrupt occurs when ... 

0 0 
0 1 
1 0 
1 1 

INT0 is low 
Invalid selection 
There is a falling edge on INT0 
There is a rising edge on INT0 

When an interrupt occurs, the value of the program counter is stored in the 
stack as with subroutines, so that the program can return to where it was when 
the interrupt handling is over. Furthermore, when the interrupt occurs, the 
master interrupt enable bit is automatically cleared. This is so that you don't 
have interrupts occurring inside the interrupt handling routine which would 
then lead to a mess of recursion. You will probably want to re-enable the master 
interrupt bit upon returning from the interrupt handling routine. Fortunately 
there is a purpose-built instruction: 

reti 

This returns from a subroutine and at the same time enables the master inter- 
rupt bit. 

Each interrupt also has an interrupt flag. This is a flag (bit) that goes high 
when an interrupt should occur, even if the global interrupts have been disabled 
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and the appropriate interrupt service routine isn't called. If the global interrupts 
are disabled (for example, we are already in a different interrupt service routine) 
you can test the flag to see if any interrupts have occurred. Note that these flags 
stay high until reset, and an interrupt service routine will be called if the flag is 
high and the global interrupt bit is enabled. So you must reset all flags before 
enabling the global interrupt bit, just in case you have some interrupt flags 
lingering high from an event that occurred previously. Interrupt flags are reset 
by setting the appropriate b i t -  this sounds counterintuitive but it's just the way 
things are! The T/C0 Overflow interrupt flag is found in bit 1 of TIFR (Timer 
Interrupt Flag Register-  I/O number $38), and the INT0 interrupt flag is in bit 
6 of GIFR (General Interrupt Flag Register-  I/O number $3A). 

Program K: reaction tester 

�9 Interrupts 
�9 Random number generation 
�9 Seven segment displays 

The next example program will be a reaction tester. A ready button is pressed, 
then an LED will turn on a random time later (roughly between 4 and 12 
seconds). The user has to press a button when they see the LED turn on. The 
program will measure the reaction time of the user and display it in millisec- 
onds on three seven segment displays. If the user presses the button before the 
LED turns on they will be caught cheating. The circuit diagram for the project 
is shown in Figure 4.1, and the flowchart in Figure 4.2. 

We will be using the External INT0 and TCNT0 Overflow interrupts, so you 
will have to make the necessary changes to the top of the program. Note that as 
we will not be using the Analogue Comparator interrupt we don't need any 
particular instruction at address 0x003. 

EXERCISE 4.1 What are the first three instructions of the program? 

Write the Init section, setting T/C0 to count internally at CK/1024. You will 
have to enable the External INT0 and T/C0 Overflow interrupts, but don't set 
the master enable just yet. Set the External INT0 interrupt to occur when INT0 
is low (i.e. when the button is pressed). 

EXERCISE 4.2 What are the six lines which individually enable the interrupts? 

At Start we first call the Display subroutine, and then test the 'Ready' button 
(PinD, 1). Keep looping until the Ready button is pressed. 

EXERCISE 4.3 What three lines achieve this? 
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Set-up ] 
I.., 
I" 

I O"ate iso'a  f 

I 
[ Enable interrupts I 

,J 

YES 

I NO 

Increment higher 
byte 

Move "bAd" into 
display registers 

YES 

Store TCNTO value 

Convert time into 3 
digit number 

,~1 Fq 

Return without 
enabling interrupts 

,Es  
NO 

I Turn on LED 
I,Ll-,, 
V-l-,q 

NO 

Return enabling 
interrupts 

Figure 4.2 

The Display subroutine will be almost exactly like the one in the frequency 
counter project. The only difference lies in the selection of the correct display. 
Instead of rotating between bit 0 and bit 2 of Port D, this part of the subroutine 
will have to rotate between bit 4 and bit 6, testing bit 7 to see when it has gone 
too far. Make the necessary changes to the subroutine and copy it in. We now 
need to create a random time delay. 
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Random digression 

One of the interesting aspects of this program will be the generation of the 
random number to produce a time delay of random length. The most straight- 
forward method for generating random numbers is to rely on some human input 
and convert this into a number. For example, we could look at the number in 
T/C0 when the 'Ready' button is pressed. T/C0, if counting internally, will be 
counting up and overflowing continuously, and so its value when the button is 
pressed is likely to be random. Very often, however, we don't have the luxury of 
a human input, and so we have to generate a string of random numbers. How is 
this done? There are a large number of algorithms available for generating 
random numbers, varying in complexity. We are restricted in the complexity of 
the functions we can straightforwardly apply using AVR assembly language, but 
fortunately one of the more simple algorithms relies purely on addition and 
multiplication. The Linear Congruential Method developed by Lehmer in 19481 
has the following form: 

In+ 1 = m o d m ( a I  n + c) 

This generates the next number in the sequence by multiplying the previous 
number by a, adding c, and taking the result modulo m. modm(X) is equal to the 
remainder left when you divide x by m. Conveniently, the result of every oper- 
ation performed in an AVR program is effectively given in modulo 256. For 
example, we add 20 to 250. The 'real' answer is 270; however, the result given 
is 14. 14 is '270 modulo 256' or mod256(270). There are a number of restric- 
tions on the choice of a and c in the above equation that maximize the random- 
ness of the sequence (see the reference for more info). Given that the quickest 
algorithm is that with the smallest multiplier (a), we will choose a = 5 and c = 1. 
You also have to pick a ' s eed ' -  the first number in the sequence (I0). You can 
set this model up on a spreadsheet and examine its quasirandom properties. 
First, you should notice that the randomness of the sequence does not appear 
sensitive to the seed; there is therefore no need to pick a particular one. You will 
also notice the sequence repeats itself every 256 numbers - this is an unfortu- 
nate property of the algorithm. Picking a larger modulus will increase the repe- 
tition period accordingly. We could use modulo 65 536 by using one of the 
2-byte registers (X, Y or Z) and the adiw instruction. This would result in a 
sequence that repeats only every 65 536 numbers! For our purposes with the 
reaction tester, a period of 256 is quite acceptable. 

To convert this random number into a random time we do the following. The 
maximum time is 10 seconds, and the T/C0 will overflow every 256 counts = 
256/2400 = 0.066 second. We therefore would like a counter with a value 
roughly 61 and 183. You might notice the difference between these numbers is 

1 See reference on random numbers in Appendix I. 
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not far off 128 (it is in fact 122). Our life is made a lot easier if the difference is 
128, so as the times needed are quoted only as approximate figures, we can use 
a counter that goes from 60 to 188 which will perform adequately. To convert our 
random number between 0 and 255 we first divide by two, then add 60. 

Returning to the program, we will use register Random to hold the random 
number. We need then to multiply this by five (add it to itself four times), and 
then add one to it. 

EXERCISE 4.4 What six lines will generate the next random number? 

EXERCISE 4.5 What three lines will copy Random into CountX, divide 
CountX by two, and then add 60. 

We then need to reset the higher byte of the timer (Timelt), turn off the displays 
(clear PortB), reset all the interrupt flags, and then set the master interrupt 
enable. 

EXERCISE 4.6 Which six lines will reset TimeH, PortB and the interrupt flags? 

There is a particular instruction for setting the master interrupt enable: 

sei ; Sets the interrupt enable bit. 

The rest of the program is a loop which just tests the interrupt enable bit, and 
loops back to Start when it has been cleared. This is because after an External 
INT0 interrupt, the master interrupt bit will not re-enable interrupts and upon 
returning the program will loop back to Start. In contrast, after a T/C0 related 
interrupt the interrupts will be re-enabled so the program will stay in the loop. 

EXERCISE 4.7 What three lines finish off the main body of the program? 

Looking first at the T/C0 overflow interrupt handling routine (Tint), we see that 
the first test is to see whether or not the LED (PinD, 0) is on. If it is off we 
should be timing out the random time to see when to turn it on. If it is already 
on we should be incrementing the higher byte of our timing registers (TimeH). 
If the time exceeds the maximum that can be displayed on the scope, we should 
move '-HI' into the display registers and return without enabling interrupts. 

The T/C0 is counting up 2400 times a second (with a register counting the 
higher byte as well). We need to convert this to milliseconds (i.e. something 
counting 1000 times a second). To do this we can multiply the 2-byte number 
by 5 and then divide by 12. Applying the reverse procedure to 999 (the 
maximum response time) we get 2397 = 95D. It would be much easier if we 
were testing only to see if the higher byte had reached a certain value (e.g. A00). 
This is easy to do by resetting T/C0 to 0xA2 when the LED is turned on, and 
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then subtract the 0xA2 back off the final answer at the end of the day: 

Tint" sbic PinD, 0 
rjmp TInt_LEDon 

; tests LED 
; jumps to different section if on 

dec 
breq 
reti 

CountX 
PC+2 

; decrements random counter 
; skips if clear 
; returns otherwise 

sbi PortD, 0 
ldi temp, 0xA2 
out TCNT0,  temp 
reti 

; turns on LED when time passes 
; initializes TCNT0 to 0xA2 
; to facilitate testing for max 

Tint  LEDon: 
inc TimeH ; increments higher byte 
cpi TimeH, 0x0A ; tests for maximum time 
breq PC+2 ; skips if the user is too slow 
reti 
ldi Hundreds,  13 ; - 
ldi Tens, 14 ; H 
ldi Ones, 1 ; I 
ret ; returns without setting I-bit 

The External INT0 interrupt handling routine is more straightforward- we will 
call it Extlnt. This also involves testing the LED first. If it isn't on this means 
the user has cheated by pressing the button before the LED has turned on. In 
this case, we move numbers 10, 11 and 12 into Hundreds, Tens and Ones 
respectively in order to display 'bAd', and then return without re-enabling the 
master interrupt bit. If the LED is on, the press is valid, and so we have to halt 
the T/C0 and store the current time by moving T/C0 into TimeL. It is possible, 
however unlikely, that the T/C0 overflowed just after the INT0 interrupt 
occurred. We therefore need to test the T/C0 overflow interrupt flag, and incre- 
ment TimeH if it is set. Then the total reaction time (split up over TimeL and 
TimeH) needs to have 0xA2 subtracted from it (as this was artificially added). 
It must then be multiplied by 5 and divided by 12. 

EXERCISE 4.8 Which 12 lines test the LED at the start of Extlnt, test the LED, 
jump to a section called Cheat if it isn't on, and halt the T/C0 and store the 
current value, incrementing TimeH if necessary? 0xA2 should then be 
subtracted from the total reaction time, and T/C0 should be restarted at 
CK/1024. 

EXERCISE 4.9 Which four lines form the Cheat section? 
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After subtracting 0xA2 we need to multiply the time by 5. As the time is split 
over two registers we need to use the ade to add a carry to the higher byte if and 
when there is a carry: 

Times5" 

ldi Count4, 4 ; loads a counter with 4 
mov temp, TimeL ; stores time in temp and tempH 
mov tempH, TimeH ; 
add temp, TimeL ; adds TimeL to itself 
adc tempH, TimeH ; adds TimeH and Carry to itself 
dec Count4 ; does this 4 times 
brne Times5 

The product is now held over temp and tempH. We then divide the result by 12. 
The simplest way to do this is to see how many times we can subtract 12 from 
the total. 

EXERCISE 4.10 Challenge/What nine lines will first clear TimeL and TimeH, 
and then enter a loop which divides the 2-byte number stored between temp and 
tempH by 12, leaving the result in TimeL and TimeH. (To skip out of the loop 
jump to the DigitConvert section.) 

DigitConvert converts the 2-byte number into a three-digit number (this is copied 
from the frequency counter with the register names changed accordingly). Instead 
of the ret instruction at the end of the section, write rjmp Start. 

You will have to set up all the registers (R0-R14) that hold the seven segment 
codes in the Init section. Registers R10, R11, R12, R13 and R14 hold the codes 
for a 'b', 'A', 'd', '-' and 'H' respectively. You can double check you've done 
everything correctly by looking at Program K in Appendix J. It should be quite 
fun to try this one out. Of course, the simplest way of using an AVR as a reac- 
tion tester is to get a friend to hold it between your fingers and drop it, and then 
see how far down the chip you caught it! 

Analogue comparator 
Another useful feature on most of the AVRs is an analogue comparator (AC) 
which compares the voltages on two pins (called AIN0 and AINI = PB0 and 
PB1 on the 1200) and changes the state of a bit depending on which voltage is 
greater. This is all controlled by the ACSR I/O register, whose bit assignments 
are shown in Figure 4.3. 

Bit 7 is simply an on/off switch for the AC. You should disable the AC inter- 
rupt (clear bit 3) before disabling the AC otherwise an interrupt might occur 
when you try to switch it off. Bits 0 and 1 dictate what triggers an AC interrupt 
in terms of the AC result (i.e. interrupt when the AC result changes, when it 
rises, or when it falls). The remaining bits are self-explanatory. 
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ACSR - Analogue Comparator Control and Status Register 

Bit no. 7 6 5 4 3 2 1 
Bit name A D C  - A C O  ACI ACIE - AClS1 

0 
AClS0 

I 
!1 
00 Interrupt on Change 

01 

10 Interrupt on Falling Edge 

11 Interrupt on Rising Edge 

0: Disables Analogue Comparator Interrupt 
1 Enables AC interrupt 

0: Interrupt hasn't occurred 
1 Interrupt has occurred 

0: Voltage at AIN0 > Voltage at AIN1 
1: Voltage at AIN0 < Voltage at AIN1 

0: Analogue Comparator On 
1' Analogue Comparator Off (lowers power consumption) 

Figure 4.3 

Program L: 4-bit analogue to digital converter 

�9 Analogue comparator 

This next project is very much a case of doing what you can with what you 
have. Some of the more advanced AVRs have full-blown 10-bit analogue to 
digital converters, and so with these the ability to create a 4-bit converter is 
clearly of limited value. However, many AVRs don't benefit from this luxury, 
being blessed with only a comparator, and in these cases the following program 
can be useful. The key to this project is using a summing amplifier to create one 
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of 16 possible reference voltages. By running through these reference voltages 
and comparing them with the input signal, we can determine the input voltage 
with 4-bit resolution and within four cycles of the loop. The circuit diagram is 
shown in Figure 4.4, pay particular attention to how the summing amplifier 
works. For more information on summing amplifiers, see the reference 2. The 
straightforward flowchart is shown in Figure 4.5. 

PD0 to PD3 control which reference voltage is being fed to the comparator, 
as summarized in Table 4.3. 

Table 4.3 

0000 0 V 1000 2.5 V 
0001 0.312 V 1001 2.812 V 
0010 0.625 V 1010 3.125 V 
0011 0.937 V 1011 3.437 V 
0100 1.25 V 1100 3.75 V 
0101 1.562 V 1101 4.062 V 
0110 1.875 V 1110 4.375 V 
0111 2.187 V 1111 4.687 V 

Write the Init section, remembering to turn on the analogue comparator by 
setting bit 7 of ACSR. Leave the AC interrupt off. At Start we first set up PortD 
with 0b00001000. This sets the most significant bit of the voltage selector and 
thus feeds 2.5 V into AIN0. This is then compared with the input at AIN 1. If the 
input is higher than the reference, bit 5 of ACSR will be high, otherwise bit 5 
will be low. If the input is higher than the reference, the answer is greater than 
1000 and so we leave bit 3 of the reference high and set bit 2. If the input is 
lower than the reference, the answer is less than 1000 and so we clear bit 3, and 
then set bit 2. 

EXERCISE 4.11 Write the five lines which set up PortD with the initial value 
and then test the AC result. If the AC result is low, clear bit 3 of PortD. In either 
case set bit 2 of PortD. 

EXERCISE 4.12 Repeat the above for the remaining bits (eight more lines). 

EXERCISE 4.13 Challenge! Write the four lines that transfer the resulting state 
of PD0-3 to the output bits (PB4-7), and then loop back to Start. 

2 See references: Introducing Electronic Systems, M. W. Brimicombe (1997) Nelson Thornes. 
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I Set~- 

Start with 1000 

NO 

Clear bit and set next bit Set next bit 

Figure 4.5 

l O-bit analogue to digital conversion (ADC) 

Other AVR models such as the Tinyl5, 4433 and 8535 have a built-in 10-bit 
A/D converter. This works in much the same way as the 4-bit converter we built 
in the previous section, except it is all done for us automatically and internally. 
The voltage on one of the analogue input channels is measured (with respect to 
the voltage on a reference pin AREF), converted into a 10-bit binary number, 
and stored over two I/O registers called ADCL and ADCH (which stand for 
ADC Result Lower byte and ADC Result Higher byte). There are two basic 
modes of operation: Free Running and Single Conversion. In 'Free Running' the 
ADC repeatedly measures the input signal and constantly updates ADCL and 
ADCH. In 'Single Conversion' the user must initiate every AD conversion 
themselves. 

For the 4433 and 8535, the pin being read is selected using the I/O register 
called ADMUX ($07). The bit assignment is shown in Table 4.4, all other bits 
are not used. 

If you want to test a number of channels, you can change the ADMUX 
register, and the channel will be changed immediately, or, if an AD conversion 
is in progress, after the conversion completes. This means you can scan through 
channels in 'Free Running' mode more easily, as you can change the channel 
during one conversion, and the next conversion will be on the new channel. 

The rest of the ADC settings are held in the ADCSR (ADC Status Register), 
I/O register $06. The bit assignments are shown in Figure 4.6. 
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Table 4.4 

ADMUX bits 2,1,0 Analogue input 

000 Channel 0 (PA0) 
001 Channel 1 (PAl) 
010 Channel 2 (PA2) 
011 Channel 3 (PA3) 
100 Channel 4 (PA4) 
l 01 Channel 5 (PA5) 
l 10 Channel 6 (PA6) 
111 Channel 7 (PA7) 

A D C S R  - A D C  Status Register ($4)6) 

Bit no. 7 6 5 4 
Bit name ADEN ADSC ADFR ADIF 

Figure 4.6 

3 2 1 0 
ADIE ADPS2 ADPS1 ADPS0 

i 
ADO Clock frequency 

. . .  

000 CK/2 

001 CK/2 

010 CK/4 

011 CK/8 

100 CK/16 

101 CK/32 

110 CK/64 

111 CK/128 

0: Disables ADC Complete Interrupt 
]" Enables ADC Complete Interrupt 

0: No ADC Complete Interrupt has occurred 
]: The ADC Complete Interrupt has occurred 

0: Single Conversion mode 
1" Free Running mode 

(In "Single Conversion" Mode): 
0: AD Conversion has finished 
]" Starts a conversion 

0: ADC Off (lowers power consumption) 
1: ADC On 
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Bits 0 to 2 control the frequency of the ADC clock. This controls how long 
each conversion takes and also the accuracy of the conversion. A clock between 
50 kHz and 200 kHz is recommended for full, 10-bit, accuracy. Frequencies 
above 200 kHz can be chosen if speed of conversion is more important than 
accuracy. For example, a frequency of 1 MHz gives 8-bit resolution, and 2 MHz 
gives 6-bit resolution. The ADC complete interrupt occurs (if enabled) when an 
ADC conversion has finished. The other bits are straightforward. 

The ADC on the Tiny l 5 is slightly more advanced, offering features such as 
internal reference voltages and differential conversion (i.e. measuring the 
voltage difference between two pins). Moreover, in the case of the 4433 and 
8535 the 10-bit ADC result is stored with the lower byte in ADCL and the 
remaining two msb's in ADCH. In the case of the Tiny l 5, you have the choice 
between this arrangement, and storing the upper byte in ADCI-I and the 
remaining two lsb's in ADCL. These changes all take place in the ADMUX 
register, shown in Figure 4.7. 

Looking at bits 0 to 2 again, we see the option to look at the voltage differ- 
ence between pins, namely ADC2 (PB3) and ADC3 (PB4). These inputs are put 
through a differential amplifier, and then measured using the ADC. The differ- 
ential amplifier can either have a gain of x l or x20. You will notice that two of 
the settings give the difference between ADC2 and itsel~ This is used for cali- 
bration purposes, as the differential amplifier used in the difference setting will 
have a small offset. By measuring this offset and subtracting from the answer of 
your real difference measurement, you will improve the accuracy of your result. 

Another handy feature if you are interested in a high accuracy conversion is 
to send the chip to sleep and perform an AD conversion whilst in sleep. This 
helps eliminate noise from the CPU (central processing unit) of the chip. An 
ADC complete interrupt can then be used to wake up the chip from sleep. This 
method is demonstrated in Example 4.1. 

Example 4.1 

Idi 
out 
Idi 
out 
sleep 

temp, 0bl0001011 ; enables ADC, Single Conversion 
ADCSR, temp ; enables AD Complete Interrupt 
temp, 0b00101000 ; enables sleep, 
MCUCR ; 'AD Low Noise mode' 

; goes to s l e e p -  this automatically 
; starts AD Conversion 

When the AD conversion completes, the AD conversion interrupt routine will 
be called (address $008 on the Tinyl 5, and address $00E on the 4433 or 8535), 
when the program returns from the routine it will carry on from the line after 
the sleep instruction. 
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A D M U X -  ADC Multiplexer ($07) 

Bit no. 7 6 
Bit name REFS1 REFS0 

5 4 3 2 1 
ADLAR - - M U X 2  MUX1 

0 
M U X 0  

I 
300 

D01 

D10 

311 

100 

101 

110 

111 

ADC0 (PB5) 

ADC 1 (PB2) 

ADC2 (PB3) 

ADC3 (PB4) 

ADC2 - ADC2 

ADC2 - ADC2 

ADC2 - ADC3 

ADC2 - ADC3 

x l  

x20 

x l  

x20 

ADC Left Adjust Result: 
0: Lower byte of result in ADCL, 2 msb's in ADCH 
1" Higher byte of result in ADCL, 2 Isb's in ADCL 

00 

01 

10 

Vcc is reference voltage 

AREF (PBO)is reference voltage 

Internal reference (2.56V) 

Internal reference (2.56V) with smoothing capacitor at PB0 

Figure 4.7 

Program M" voltage inverter 

�9 Analogue to digital conversion 
�9 Digital to analogue conversion 

We can use ADCs to make digital to analogue converters. The trick to this is to 
use the output to charge up a capacitor until it reaches the required output 
voltage. The AVR's output then goes open circuit (turns itself into an input). The 
capacitor will then slowly discharge through the input impedance of whatever 
is reading it, lowering the analogue output. Meanwhile another input is moni- 
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toring the voltage of the analogue output. If it falls below a certain mark, the 
AVR's output is turned on again to top up the analogue output. To lower the 
analogue voltage, the AVR output is cleared to 0 to discharge the capacitor 
quickly. Figure 4.8 illustrates this technique, though the jaggedness of the final 
output is exaggerated. 

PBO 

PB2 

A A 

I I I -- output 

I T c 

l L_J l_l 
~L 

~ :  . . . . . . . . . . .  

Figure 4.8 

R should be made small enough to allow quick response time, and C high 
enough to give a smooth output. We will demonstrate this with a project that 
takes an input, i, between 0 and 5 V, and outputs ( 5 -  i). For example, 2 V in 
becomes 3 V out. The circuit diagram is shown in Figure 4.9, and the flowchart 
in Figure 4.10. 

In the Init section, we will have to enable A/D conversion, and select ADC0 
to start with. We would like maximum accuracy, and so require a clock speed 
that is less than 200 kHz. We will be using the internal oscillator which runs at 
1.6 MHz. This means that an ADC clock of CK/8 (200 kHz) will be acceptable. 
The ADC should be single mode, and set the 'Left Adjust' bit so that the upper 
byte of the ADC result is in ADCH and the two lsbs in ADCL. Finally, let Vr162 
be the reference voltage, and start an AD conversion. 
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I> 
input 
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U1 

PB3/ADC2 PBI /A IN1  1 
PB4 /ADC3  PB0/AIN01AREF 

ATT INY15  10k / 

C1 i i  

T lpF 
v 

-+5V 

~> 

output 

0V 

Figure 4.9 

Set-up ] 

,q 

I Measure voltage on input I 
I 

I - input output 5 desired 
I 

I Measure voltage on output I 

NO 

I Make PBO 5V [ 

I: ~ 

NO 

MakePBOOV I I 
I-,, 

I Make PBO input [ 
I 

I 

Figure 4.10 

EXERCISE 4.14 
the Init section? 

What numbers should be moved into ADCSR and ADMUX in 

Write the whole of the Init section. Initially make PB0 an output. PB5 and PB2 
should be inputs. Once the AVR reaches Start, the ADC0 channel should be 
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selected (by clearing ADMUX, bit 0), and an A/D conversion should be started 
(by setting ADCSR, bit 6). When the A/D conversion is over, this bit will be 
cleared, so we can test this bit and wait for it to set. 

EXERCISE 4.15 What four instructions start an A/D conversion on ADC0 and 
wait for it to complete? 

Once the conversion is complete, the input voltage will be stored in registers 
ADCL and ADCH. There is no need for the full 10-bit accuracy, and so we will 
simply use 8 bits. With Left Adjust enabled, this simply involves reading the 
number from ADCH. To perform the function ( 5 -  input voltage) we simply 
invert the result (ones become zeros and vice versa). Invert the results using the 
coin instruction, and store the result in a working register called Desired (this 
represents the voltage we want on the output). 

EXERCISE 4.16 Which s/x instructions store and invert the measurement of the 
input voltage, change the input channel to select ADC 1, and start a new conver- 
sion? It should also wait in a loop until the current conversion finishes. 

Now the voltage on the output has been read and can be compared with the 
desired voltage. Save the measured voltage from ADCH into a working register 
called Actual (the actual voltage on the output). Then use the compare (cp) and 
branch-if-lower (brlo) instructions to jump to sections called TooI-Iigh (the 
actual output is higher than the desired output), or TooLow (the actual output is 
less than the desired output). 

EXERCISE 4.17 Which seven lines perform these tests and branch out as 
required? If the actual and desired voltages are equal, PB0 should be made an 
input (by clearing DDRB, bit 0) and then the program should jump back to 
Start. 

The TooHigh section needs to lower the output, and so PB0 is made an output 
(by setting DDRB, bit 0) and then made low (0V) to discharge the capacitor and 
lower the output. TooLow needs to raise the output, and so PB0 is made an 
output and made high (5V) to charge up the capacitor. 

EXERCISE 4.18 Write the six lines that make up the TooHigh and TooLow 
sections. The end of both sections should jump back to Start. 

That wraps up Program M. You may want to experiment a little and make the 
device perform more complicated functions on the input, or perhaps on two 
inputs. Perhaps you can make some form of audio mixer by summing two input 
channels, or subtract the left and right channels of an audio signal to get a 
'pseudo-surround sound' output. As you can see, there are a number of inter- 
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esting projects that can be based around the above, and all on the little Tiny l 5 
chip! 

EEPROM 

In addition to the RAM and program memory that we have already seen, many 
AVRs have an additional memory store which combines the flexibility of RAM, 
with the permanence of program memory. Unlike the RAM, the EEPROM will 
keep its values when power is removed and unlike the program memory, the 
EEPROM can be read and written to while the program runs. EEPROM stands 
for Electrically Erasable Read-Only Memory. There are three I/O registers 
associated with the EEPROM: 

�9 E E A R -  The register which holds the address being written to/read from the 
EEPROM 

�9 E E D R -  The register which holds the data to be written to/read from the 
EEPROM 

�9 E E C R -  The register which holds controls the EEPROM 
- Set bit 0 of EECR to read from the EEPROM 
- Set bit 1 of EECR to write to the EEPROM 

The 1200 has 64 bytes of EEPROM, though other AVRs can have much more 
(up to 512 bytes). The write operation takes a certain amount of time. To wait 
until the writing process is over, test bit 1 of EECR (the one you set to start the 
wri te) -  when the writing finishes the bit is cleared automatically. 

Example 4.2 To write the number 45 to EEPROM address 0x30, we would 
write the following: 

EEWait: 

ldi temp, 0x30 ; sets up address to write to 
out EEAR, temp ; 
ldi temp, 45 ; sets up data to write 
out EEDR, temp ; 
sbi EECR, 1 ; initiates write 
sbic EECR, 1 ; waits for write to finish 
rjmp EEWait ; loops until EECR, 1 is cleared 

Example 4.3 To read address 0x14 of the EEPROM we write the following. 
At the end of the segment of code, the data held in address 0x14 will be in 
EEDR. 

ldi temp, 0x14 ; sets up address to read 
out EEAR, temp ; 
sbi EECR, 0 ; initiates read 

; data now held in EEDR 
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EXERCISE 4.19 Challenge. t Write a routine which sets up addresses 0x00 to 
0x0F of the EEPROM to be an ASCII look-up table. This means address 'n' of 
the EEPROM holds the ASCII code for the 'n' character (i.e. the code for 
numbers 0-9, A, B, C, D, E and F). The ASCII codes for the relevant characters 
are given in Appendix G. The routine should be 14 lines long. 

There are two ways to program the EEPROM when you are programming your 
chip. In AVR Studio, you can go to View ~ New Memory View (Alt + 4) and 
select EEPROM. This will give you a window with EEPROM memory loca- 
tions. Simply type in the values you wish to program into the EEPROM, and 
when you select the programmer (e.g. STK500), select 'Program EEPROM' 
and choose 'Current Simulator/Emulator Memory'. This will load the contents 
of the EEPROM window onto the EEPROM of the chip. An easier way is to 
specify what you want to write to the EEPROM in your program itself. Use the 
.eseg directive (EEPROM segment) to define EEPROM memory. What you 
write after that will be written to the EEPROM. If you want to write normal 
code after this, you must write .cseg (code segment). 

Example 4.4 

.eseg 

.db 

.db 

; writes what follows to the EEPROM 
0x04, 0x06, 0x07 ; 
0x50 

.cseg 

ldi temp, 45 

; writes what follows to the program 
; memory 

The .db directive stores the byte(s) which follow to memory This particular code 
writes 0x04, 0x06, 0x07 and 0x50 to memory locations 00-03 in the EEPROM. 
Note that this is not a way to change the EEPROM during the running of the 
programming- it is only a way to tell the programmer what to write to the 
EEPROM when you are programming the chip. Directives such as .org can be used 
to select specific addresses in the EEPROM. On the 1200, which doesn't support 
the lpm instruction, it is a better use of resources to store the seven segment look- 
up table in the EEPROM, than in registers RO--R10, as previously done. 

16-bit timer~counter 1 

Some AVRs, such as the 2313, have a separate 16-bit timer/counter in addition 
to the 8-bit TCNT0. This is called Timer/Counter 1, and is quite useful as the 
need for markers and counters to time natural time lengths becomes greatly 
reduced. The number in Timer/Counter 1 (T/C 1) is spread over two I/O regis- 
ters: TCNTIH (higher byte) and TCNTIL (lower byte). The T/C1 can be 
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prescaled separately to T/C0 (i.e. it can be made to count at a different speed), 
and can also be made a counter of signals on its own input pin: T1 (as opposed 
to TO which is the T/C0 counting pin). If the T/C1 is counting up at 2400 Hz, 
the 16 bits allow us to time up to 27 seconds without the need for any further 
counters. One very important point to note with this 2-byte timer/counter is that 
when you read T/C 1, the 2 bytes must be read at the same time, otherwise there 
is a chance that in between storing the lower and higher bytes, the lower byte 
overflows, incrementing the higher byte, which lead to a large error in the stored 
answer. In order to do this you must therefore read the lower byte first. When 
you read in the TCNTIL, the number in TCNT1H is at the same time auto- 
matically stored in an internal TEMP register on board the AVR. When you then 
try to read in TCNTIH, the value read is taken from the TEMP register, and not 
from TCNT1H. Note that the internal TEMP register is completely separate to 
the working register R16 which we often call temp. 

Example 4.5 
TimeH. 

Read Timer/Counter 1 into two working registers, TirneL and 

Value in T/C 1 
0x28FF in 

0x2900 in 

TimeL, TCNT1L ; stores FF in TimeL, and stores 0x28 
; into the internal TEMP reg. 

TimeH, TCNT1H ; copies TEMP into TimeH 

Therefore, even ifT/C 1 changes from 0x28FF to 0x2900 in between reading the 
bytes, the numbers written to TimeL and TimeH are still 0x28 and 0xFE and 
not 0x28 and 0x00. 

Similarly, when writing a number to both the higher and lower registers you 
must write to the higher byte first. When you try to write a number to 
TCNT1H, the AVR stores the byte in the internal TEMP register and then, 
when you write the lower byte, the AVR writes both bytes at the same time. 

Example 4.6 Write 0x28F7 to the Timer/Counter 1. 

ldi 
ldi 
out 

TimeL, 0x28 
TimeH 0xF7 
TCNTIH,  TimeH ; writes 0x28 into internal TEMP reg. 

out TCNT1L,  TimeL ; writes 0xF7 to TCNT1L and 0x28 into 
; TCNT1H at the same time 

The T/C 1 has some other 2-byte registers associated with it, such as ICR1H, L 
and OCR1AH, L, and they must be written to and read from in the same way 
as TCNT1H, L. The functions of these registers are discussed in the next two 
sections. 
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Input capture 
Let's say, for example, that we wish to measure the time until an event occurs 
on a certain pin (as we had to do with the frequency counter project). We could 
just test the pin and then read the T/C 1 as we did before, but in order to simplify 
the program and free up the processor on the chip, we can use a handy feature 
that captures the value in T/C 1 for us. The input capture feature automatically 
stores the value in T/C 1 into two I/O registers: ICR1H (Input Capture Register 
for Timer/Counter 1, Higher byte) and I C R I L  (Lower byte) when an event 
occurs on the ICP (Input Capture Pin), which is PD6 on the 2313. This event 
can be a rising or falling edge. The input capture feature is controlled by an I/O 
register called TCCR1B (one of the two Timer Counter 1 Control Registers)-  
the other control register for T/C 1 is called TCCR1A and will be discussed in 
the next section. 

TCCR1B - Timer Counter 1 Control Register B ($2E) 

Bit no. 7 6 5 4 3 2 
Bit name I C N C l  ICES1 - - CTCl  CS12 

ir 
ooo 

OOl 

OlO 

O l l  

1 oo 

lO l  

11o 

111 

1 0 
cs11  C S l 0  

i I 

STOP! T/C1 is stopped 

T/C1 counts at the clock speed (CK) 

T/C1 counts at CK/8 

T/C1 counts at CK/64 

T/C1 counts at CK/256 

T/C1 counts at CK/1024 

T/C1 counts on falling edge of T1 pin 

T/C1 counts on rising edge of T1 pin 

/ 1 
O: Doesn't reset T/C1 on Compare Match 
1" T/C1 is reset to $0000 on Compare Match 

1 

O: Falling edge on ICP triggers T/C1 capture 
1" Rising edge on ICP triggers T/C1 capture 

1 (4): 
0: Noise Canceller disabled 
1: Voltage change on ICP must last at least 4 clock cycles 

Figure 4.11 
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Bit 7 can be used to make the feature more robust to noise on the ICP pin. If 
this feature is enabled, the voltage must rise from logic 0 to 1, for example, and 
stay at logic 1 for at least four clock cycles. If the voltage drops back to logic 0 
before the four clock cycles have passed, the signal is rejected as a glitch, and 
there is no input capture. If you are trying to read signals that will be less than 
four clock cycles, you will have to disable this noise cancelling feature (clear 
the bit). Bit 3 refers to the output compare function which is introduced in the 
next section. There is an input capture interrupt to let us know when an input 
capture has occurred. This calls address $003 (on the 2313). The enable bit is 
bit 3 of TIMSK. 

Example 4.7 Input capturing could be used in a speedometer on a bicycle, 
where a magnet would pass by the sensor with every revolution of the wheel. 
The speed of the bike could be deduced as a function of the time between each 
revolution. The magnetic sensor could be attached to the ICP pin, which would 
go high every time the magnet passes over the sensor. We would want to be able 
to measure times up to about 1 second, which means prescaling of the CK/256 
would be ideal. You may wish to remind yourself of the 2313 interrupt vector 
table in Appendix E. The skeleton of a speedometer program is shown below: 

rjmp 
reti 
reti 

Init ; address $000 
; $001 - not using INT0 interrupt 
; $002 - not using INTI interrupt 

IC_Int: 
in 

in 
sub 
sbc 
m o v  

m o v  

rcall 
reti 

; $ 0 0 3 -  the Input Capture interrupt 
temp, ICRL ; stores captured value in working 
tempH, ICRH ; registers 
temp, PrevL ; finds different between old and new 
tempH, PrevH ; values 
PrevL, ICRL ; stores new values 
PrevH, ICRH ; 
DigConvert ; converts two-byte time into digits 

Display: etc. 
ret 

; left for you to write 

DigConvert: etc. 
ret 

; left for you to write 

Init: ldi 
out  

ldi 
out  

temp, 0b 11000100 
TCCR1B, temp 
temp, 0b00001000 
TIMSK, temp 

; enables noise canceller 
; T/C1 counts at CK/256 
; enables TC interrupt 
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sei 
etc. 

; enables global interrupt 
; left for you to write 

Start: rcall Display ; keeps updating the displays 
rjmp Start ; loops 

The display and digit-convert subroutines are not included, but it is expected 
that you could write them based on the similar display routines in previous 
example projects. Note that the DigConvert subroutine should convert the 
number held over temp and templt (i.e. the difference between the two times) 
into the digits to be displayed. The remainder of the Init section should also be 
completed- this sets up the inputs and outputs. Note that even though we are 
not using the interrupts that point to addresses $001 and $002, we still need 
instructions for those addresses. We could just use nop (no operation, i.e. do 
nothing), but reti is safer. The idea is that if by some unforeseeable error an 
INT0 interrupt is triggered, the program will simply return, and no damage will 
be done. This is a basic example of defensive programming- i.e. expect the 
unexpected. 

Output compare 

In almost any application of the timer/counters, you are testing to see if the 
timer/counter has reached a certain value. Fortunately, all chips with a 
'Timer/Counter 1' have a built-in feature which does this automatically. We can 
ask the AVR to continually compare the value in T/C1 with a certain 16-bit 
value. When T/C1 is equal to this value, an interrupt can occur, or we can 
change the state of one of the output pins, and we can also make the T/C 1 reset 
(see bit 3 of the TCCRIB register shown on page 119). On the 2313, for 
example, the value that is to be compared with T/C1 is stored over two I/O 
registers: OCR1AH and OCR1AL (which stand for Output Compare Register 
A for T/C1, Higher and Lower bytes respectively). The 'A' is to distinguish 
them from a second set of output compare registers (labelled 'B') that are found 
in other chips such as the 8515. The 8515, for example, can therefore constantly 
compare T/C 1 with two different values. If we wish to use the output compare 
feature we will need to enable the Output Compare Interrupt, which occurs 
when TCNTIH - O C R 1 A I t  and TCNTIL = OCR1AL. The enable bit for 
this interrupt is in TIMSK, bit 6. The interrupt address varies between different 
models, but for the 2313 the output compare interrupt calls address $004. We 
will find the output compare feature very useful in the next project, and in the 
next chapter we will see how it can be used for PWM (pulse width modulation). 

EXERCISE 4.20 Challenge/If we want an interrupt to occur every second, and 
we are using a 4 MHz oscillator, suggest numbers that should be moved into the 
following registers: TCCR1B, TIMSK, OCRIAH, OCR1AL. 
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Major  program N" melody  m a k e r  

�9 EEPROM 
�9 Output compare 
�9 Sounds 

By driving a speaker at a certain frequency, we can use the AVR to create 
musical notes. In fact, using a square wave actually creates a more natural sound 
than a sine wave input. This end-of-chapter project will allow the user to 
program short melodies into the EEPROM of the chip, and then play them back 
through a speaker. The relation between some musical notes and frequencies is 
shown in Table 4.5. 

Table 4.5 

C 

128 Hz 

F# 

181 Hz 

C# 

136 Hz 

G 

192 Hz 

D 

144 Hz 

G# 

203 Hz 

D# 

152 Hz 

A 

215 Hz 

E 

161 Hz 

A# 

228 Hz 

171 Hz 

B 

242 Hz 

The values for the next highest octave can be obtained by doubling the 
frequency. For example, the next 'C'  will be at 256 Hz. Assuming we use four 
octaves, we can encode the note as the letter (which needs 4 bits) and the octave 
number (which needs 2 bits). The length of the note will be encoded in the 
remaining 2 bits. Each note in the melody will therefore take up 1 byte of 
EEPROM. The 2313 has 128 bytes of EEPROM, which means we can store a 
128-note melody. If longer tunes are required, a chip with more EEPROM can 
be used instead, such as the 8515. The note will be encoded as shown in Figure 
4.12. 

Bit no 7 6 5 4 3 2 1 0 
, , 

Length Octave Letter 

(e.g. C#) 

Figure 4.12 
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The circuit will simply consist of a speaker attached to PB0 (and the usual 
crystal oscillator on XTAL 1 and XTAL2). The AVR can drive a speaker on its 
own, as long it has a relatively high impedance (e.g. 64 ohm). If you are using 
a lower impedance speaker (e.g. 8 ohm) you might be better off driving it with 
a transistor. The flowchart is shown in Figure 4.13; notice how the entire 
program is interrupt oriented and the main body of the program will simply be 
a loop. 

/0 /1 

Set-up 1 Toggle State of PB0 
,,, 

Return 

Figure 4.13 

I Oecremen' Lenoth reo. I I 

<"  ,s Leno,h - 

I 1  
I 

Get next note ] 

YES 

" y  No 

Translate note into 
frequency and length 

I [Return] 

I 
Reset EEPROM 
a d d r e s s  to 0 

I 

A 'note letter' value between 0x0 and 0xB will correspond to a note between 
'C' and 'B'. The value 0xC in the 'note letter' part of the EEPROM byte will 
indicate the end of the melody and cause the chip to return to the start of the 
melody and repeat it over again. You may want to add extra functionality by 
including 0xD in the 'note letter' part of the byte, meaning end the melody and 
do not loop back (i.e. just wait until a manual reset), but this is not included in 
my version of the program. In the Init section, configure the inputs and outputs, 
the timing registers, and the stack pointer register (SPL). Enable the T/C0 
Overflow and T/C 1 Output Compare interrupts. The T/C 1 will be used to create 
a signal of a certain frequency on the speaker pin, whilst T/C0 will be used to 
regulate the length of the note. Therefore, set up T/C0 to count at CK/1024, and 
T/C 1 to count at CK. In the Init section you will also have to set up the first note; 
call a subroutine Read_EEPROM to do this, we will write the subroutine later. 
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At Start: you need only write one instruction which loops back to Start. 
Whenever the T/C 1 Output Compare interrupt occurs the output will have to 
change state. This simply involves reading in PortB into temp, inverting it, and 
then outputting it back into PortB. 

EXERCISE 4.21 Write the four lines which make up the T/C 1 Output Compare 
interrupt section. Include a link to this section at address $004 in the program 
memory. 

All that remains is the T/C0 Overflow interrupt section. Length will be a 
working register we use to keep track of the length of the note. At the start of 
the section, decrement Length. If it isn't zero just return; if it is, skip the return 
instruction and carry on. If sufficient time has passed, we need to change the 
note, but first there must be a short pause. This pause allows us to repeat the 
same note twice without making it sound like a single note played for twice as 
long. An easy way to insert a pause is simply to wait for the T/C0 Overflow 
interrupt flag to go high again. If it is, skip out of the loop, reset the flag and 
move on to the section that reads the next note. Call this section 
Read EEPROM. 

m 

EXERCISE 4.22 Write the eight lines at the start of the T/C0 Overflow interrupt 
section. Include a link to this section at address $006. 

The Read_EEPROM section copies the number in a working register called 
address into EEAR. Read the EEPROM into the ZL register, and mask bits 
4-7, selecting the 'note letter' part of the byte. Then compare ZL with the 
number 12 (0xC); if it is equal, jump to a section called Reset. If it isn't equal 
test to see if it is less than 12 (brlo). If it isn't less (i.e. it is greater than 12) it 
is an invalid note letter, and so ZL should be reset to 0x0, for want of a better 
note. If it is less than 12, skip that instruction. 

EXERCISE 4.23 Write the first eight lines of the Read_EEPROM section. 

We will be using ZL to read values from a look-up table in the program memory 
(using the lpm instruction). As you may remember, lpm uses the byte address 
of the program memory, rather than the word address, so we need to multiply 
ZL by two (using the lsl instruction). The look-up table will start at word 
address 013. We can ensure this using the .org directive in AVR Studio. This 
says 'Let the next instruction be placed at address ... '. Our look-up table starts 
as shown below (.dw is the directive which puts the word or words which follow 
in the program memory). 

.org 13 

.dw 0x7A12 ; frequency for C (word address 013) 
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.dw 0x7338 
etc. 

; frequency for C# (word address 014) 

We must therefore add 26 to ZL to correctly address the look-up table. Use lpm 
to read the lower byte, and move the result from R0 into a working register 
called NoteL. Then increment ZL and do the same, moving the result into 
NoteH. 

EXERCISE 4.24 What seven lines perform this task? 

We will need to perform some basic maths to derive the values for the look-up 
table. Taking the frequencies of the lowest octave to be played, shown in Table 
4.5, and dividing by 4 000 000 (the oscillator frequency) by these values, we get 
a set of numbers indicating the numbers with which we wish to compare T/C 1. 
To get higher octaves we will simply divide these values by two. My values are 
shown in the full version of the program in Appendix J; you may wish to check 
them, or else you can simply copy them. 

To get the correct octave we again copy EEDR into temp, swap the nibbles, 
and then mask bits 2-7, leaving us with the 2 bits we are interested i n -  those 
that choose the octave. Label the next line GetOetave. First test if the result of 
the AND operation just performed is 0; if it is we can just move on to the next 
section- GetLength. If it isn't 0, we will divide the number spread over NoteH 
and NoteL by two, decrement temp, and then loop back to GetOctave. 

EXERCISE 4.25 Write the eight lines that use bits 4 and 5 of the EEPROM byte 
to alter the frequency according to a specified octave. 

NoteH and NoteL are now ready to be moved into OCRIAH and OCRIAL,  
but remember to write the higher byte first. We then read the length, using a 
similar method to GetOctave. Again read the EEDR into temp, mask bits 5-0, 
swap the nibbles, and rotate once to the right. This places the relevant bits in bits 
1 and 2 of temp. This means the number in temp is 0, 2, 4 or 6. This is almost 
what we want, and by adding 2 to temp we get 2, 4, 6 or 8. This should be 
moved into Length. 

EXERCISE 4.26 What nine lines make up the GetLength section and return 
from the subroutine, enabling interrupts. 

The program is now finished. By programming different values into the 
EEPROM when you program the chip, it can be made to produce any tune. You 
may find a spreadsheet useful in converting notes, octaves and lengths into the 
hex number which represents them. You may also want to look into ways to 
input bytes to the EEPROM more easily. For example, you could use an array 
of push buttons in a keyboard arrangement, strobing them to lessen the number 
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of inputs needed, to input the melody. Another method might involve a seven 
segment display to display the note, with a series of buttons to scroll through 
the memory and change the note - this would require less skill as a pianist to 
enter the tune! 




