/********************************************************************** CoreXY PLOTTER 2 Code by lingib Last update 16 October 2017 Z-axis control, and two test routine, have been added to my original "CNC CoreXY Plotter" code. A unique "BW" gcode (BW for brush-width) has been introduced to the "G01" function This ensure that there is no conflict with any Inkscape "Z" gcodes. Motor1 is controlled by pins D8,D9 Motor2 is controlled by pins D10,D11 Servo1 (pen-lift) uses pin D3 ---------- COPYRIGHT ---------- This code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License. If not, see . ***************************************************************************/ // ------------------------------- // GLOBALS // ------------------------------- // ----- constants #define PI 3.1415926535897932384626433832795 #define HALF_PI 1.5707963267948966192313216916398 #define TWO_PI 6.283185307179586476925286766559 #define DEG_TO_RAD 0.017453292519943295769236907684886 #define RAD_TO_DEG 57.295779513082320876798154814105 #define CW true #define CCW false #define SERVO_MAX 238 //238: servo horn vertical #define SERVO_MIN 227 //224: servo horn horizontal /* SERVO_MIN of 227 ensures that the servo horn remains in contact with the brush slide at all times. */ // ----- Bit set/clear/check/toggle macros #define SET(x,y) (x |=(1< <- ->")); Serial.println(F(" Exit = 'E'")); // ----- flush the buffer while (Serial.available() > 0) Serial.read(); // ----- control motors with 'A', 'S', 'K', and 'L' keys char keystroke = ' '; while (keystroke != 'E') { //press 'E' key to exit // ----- check for keypress if (Serial.available() > 0) { keystroke = (char) Serial.read(); } // ----- select task switch (keystroke) { case 'a': case 'A': { // ----- rotate motor1 CW for (step = 0; step < steps; step++) { left(); } keystroke = ' '; //otherwise motor will continue to rotate break; } case 's': case 'S': { // ------ rotate motor1 CCW for (step = 0; step < steps; step++) { right(); } keystroke = ' '; break; } case 'k': case 'K': { // ----- rotate motor2 CW for (step = 0; step < steps; step++) { up(); } keystroke = ' '; break; } case 'l': case 'L': { // ----- rotate motor2 CCW for (step = 0; step < steps; step++) { down(); } keystroke = ' '; break; } case 'e': case 'E': { // ----- exit Serial.println(F(" ")); Serial.println(F(" Calibration complete ...")); keystroke = 'E'; break; } // ----- default for keystroke default: { break; } } } // ----- initialise counters for co-ordinate (0,0) THIS_X = 0; //current X co-ordinate THIS_Y = 0; //current Y co-ordinate LAST_X = 0; //previous X co-ordinate LAST_Y = 0; //previous Y-co-ordinate } // ---------------------------------- // T2 set scale factor // ---------------------------------- if (INPUT_STRING.startsWith("T2")) { Serial.println("T2"); START = INPUT_STRING.indexOf('S'); if (!(START < 0)) { FINISH = START + 6; SUB_STRING = INPUT_STRING.substring(START + 1, FINISH); SCALE_FACTOR = SUB_STRING.toFloat(); Serial.print(F("Drawing now ")); Serial.print(SCALE_FACTOR * 100); Serial.println(F("%")); } else { Serial.println(F("Invalid scale factor ... try again. (1 = 100%)")); } } // ---------------------------------- // T3 pen up // ---------------------------------- if (INPUT_STRING.startsWith("T3")) { pen_up(); } // ---------------------------------- // T4 pen down // ---------------------------------- if (INPUT_STRING.startsWith("T4")) { pen_down(); } // ---------------------------------- // T5 ABC test pattern // ---------------------------------- if (INPUT_STRING.startsWith("T5")) { abc(); } // ---------------------------------- // T6 target test pattern // ---------------------------------- if (INPUT_STRING.startsWith("T6")) { target(); } // ---------------------------------- // T7 radial line test pattern // ---------------------------------- if (INPUT_STRING.startsWith("T7")) { radials(); } // ---------------------------------- // T8 brush test 1 // ---------------------------------- /* Position the brush tip JUST above the paper then press T8. This lowers the brush causing the bristles to spread after which the brush will return to the start position. Ideally the brush tip will return to the original shape and height. If necessary adjust the brush height and angle and repeat. */ if (INPUT_STRING.startsWith("T8")) { for (int i = 0; i < 101; i++) { //gradually lower brush OCR2B = map(i, 0, 100, SERVO_MAX, SERVO_MIN); delay(20); } for (int i = 0; i < 101; i++) { OCR2B = map(i, 0, 100, SERVO_MIN, SERVO_MAX); //gradually raise brush delay(20); } } // ---------------------------------- // T9 brush test 2 // ---------------------------------- /* This test varies the brush height while painting five 10cm lines. */ if (INPUT_STRING.startsWith("T9")) { int line_spacing = 3; for (int y = 0; y < 5; y++) { for (int i = 0; i < STEPS_PER_MM * line_spacing; i++) { //move brush up up(); } delay(20); for (int x = 0; x < 100; x++) { OCR2B = map(x, 0, 100, SERVO_MAX, SERVO_MIN); //paint a line for (int i = 0; i < STEPS_PER_MM; i++) { right(); } delay(20); } pen_up(); //raise the brush for (int x = 0; x < 100; x++) { //return to line start for (int i = 0; i < STEPS_PER_MM; i++) { left(); } delay(20); } } // for (int y = 0; y < 5; y++) { //return to co-ordinate(0,0) // for (int i = 0; i < STEPS_PER_MM * line_spacing; i++) { // down(); // } // delay(20); // } } } // ------------------------------- // MOVE_TO // ------------------------------- /* Assume that our sheet of paper has been "scaled" to match the stepping motors. */ void move_to(float x, float y) { //x,y are absolute co-ordinates // ----- apply scale factor THIS_X = round(x * STEPS_PER_MM * SCALE_FACTOR); //scale x and y THIS_Y = round(y * STEPS_PER_MM * SCALE_FACTOR); // ----- draw a line between these "scaled" co-ordinates draw_line(LAST_X, LAST_Y, THIS_X, THIS_Y); // ----- remember last "scaled" co-ordinate LAST_X = THIS_X; LAST_Y = THIS_Y; } // ------------------------------------------------------------------------ // DRAW LINE // ------------------------------------------------------------------------ /* This routine assumes that motor1 controls the x-axis and that motor2 controls the y-axis. The algorithm automatically maps all "octants" to "octant 0" and automatically swaps the XY coordinates if dY is greater than dX. A swap flag determines which motor moves for any combination X,Y inputs. The swap algorithm is further optimised by realising that dY is always positive in quadrants 0,1 and that dX is always positive in "quadrants" 0,3. Each intermediate XY co-ordinate is plotted which results in a straight line */ void draw_line(int x1, int y1, int x2, int y2) { //these are "scaled" co-ordinates // ----- locals int x = x1, //current "scaled" X-axis position y = y1, //current "scaled" Y-axis position dy, //line slope dx, slope, longest, //axis lengths shortest, maximum, error, //bresenham thresholds threshold; // ----- find longest and shortest axis dy = y2 - y1; //vertical distance dx = x2 - x1; //horizontal distance longest = max(abs(dy), abs(dx)); //longest axis shortest = min(abs(dy), abs(dx)); //shortest axis // ----- scale Bresenham values by 2*longest error = -longest; //add offset to so we can test at zero threshold = 0; //test now done at zero maximum = (longest << 1); //multiply by two slope = (shortest << 1); //multiply by two ... slope equals (shortest*2/longest*2) // ----- initialise the swap flag /* The XY axes are automatically swapped by using "longest" in the "for loop". XYswap is used to decode the motors. */ bool XYswap = true; //used for motor decoding if (abs(dx) >= abs(dy)) XYswap = false; // ----- pretend we are always in octant 0 /* The current X-axis and Y-axis positions will now be incremented (decremented) each time through the loop. These intermediate steps are parsed to the plot(x,y) function which calculates the number of steps required to reach each of these intermediate co-ordinates. This effectively linearises the plotter and eliminates unwanted curves. */ for (int i = 0; i < longest; i++) { // ----- move left/right along X axis if (XYswap) { //swap if (dy < 0) { y--; down(); //move pen 1 step down } else { y++; up(); //move pen 1 step up } } else { //no swap if (dx < 0) { x--; left(); //move pen 1 step left } else { x++; right(); //move pen 1 step right } } // ----- move up/down Y axis error += slope; if (error > threshold) { error -= maximum; // ----- move up/down along Y axis if (XYswap) { //swap if (dx < 0) { x--; left(); //move pen 1 step left } else { x++; right(); //move pen 1 step right } } else { //no swap if (dy < 0) { y--; down(); //move pen 1 step down } else { y++; up(); //move pen 1 step up } } } } } //-------------------------------------------------------------------- // LEFT() (move the pen 1 step left) //--------- ----------------------------------------------------------- void left() { DIRECTION1 = CCW; DIRECTION2 = CCW; step_motors(); } //-------------------------------------------------------------------- // RIGHT() (move the pen 1 step right) //--------- ----------------------------------------------------------- void right() { DIRECTION1 = CW; DIRECTION2 = CW; step_motors(); } //-------------------------------------------------------------------- // UP() (move the pen 1 step up) //--------- ----------------------------------------------------------- void up() { DIRECTION1 = CW; DIRECTION2 = CCW; step_motors(); } //-------------------------------------------------------------------- // DOWN() (move the pen 1 step down) //--------- ----------------------------------------------------------- void down() { DIRECTION1 = CCW; DIRECTION2 = CW; step_motors(); } //---------------------------------------------------------------------------------------- // STEP MOTORS //---------------------------------------------------------------------------------------- void step_motors() { // ----- locals enum {dir1, step1, dir2, step2}; //define bit positions byte pattern = PORTB; //read current state PORTB // ----- set motor directions //(DIRECTION1 == CW) ? SET(pattern, dir1) : CLR(pattern, dir1); //normal motor direction //(DIRECTION2 == CW) ? SET(pattern, dir2) : CLR(pattern, dir2); //normal motor direction (DIRECTION1 == CCW) ? SET(pattern, dir1) : CLR(pattern, dir1); //motor windings reversed (DIRECTION2 == CCW) ? SET(pattern, dir2) : CLR(pattern, dir2); //motor windings reversed PORTB = pattern; delayMicroseconds(PULSE_WIDTH); //wait for direction lines to stabilise // ----- create leading edge of step pulse(s) pattern = SET(pattern, step1); //prepare step pulse pattern = SET(pattern, step2); PORTB = pattern; //step the motors delayMicroseconds(PULSE_WIDTH); //mandatory delay // ----- create trailing-edge of step-pulse(s) pattern = CLR(pattern, step1); pattern = CLR(pattern, step2); PORTB = pattern; // ----- determines plotting speed delayMicroseconds(DELAY); } //---------------------------------------------------------------------------- // DRAW ARC CLOCKWISE (G02) //---------------------------------------------------------------------------- void draw_arc_cw(float x, float y, float i, float j) { // ----- inkscape sometimes produces some crazy values for i,j if ((i < -100) || (i > 100) || (j < -100) || (j > 100)) { move_to(x, y); } else { // ----- variables float thisX = LAST_X / (STEPS_PER_MM * SCALE_FACTOR), //current unscaled X co-ordinate thisY = LAST_Y / (STEPS_PER_MM * SCALE_FACTOR), //current unscaled Y co-ordinate nextX = x, //next X co-ordinate nextY = y, //next Y co-ordinate newX, //interpolated X co-ordinate newY, //interpolated Y co-ordinate I = i, //horizontal distance thisX from circle center J = j, //vertical distance thisY from circle center circleX = thisX + I, //circle X co-ordinate circleY = thisY + J, //circle Y co-ordinate delta_x, //horizontal distance between thisX and nextX delta_y, //vertical distance between thisY and nextY chord, //line_length between lastXY and nextXY radius, //circle radius alpha, //interior angle of arc beta, //fraction of alpha arc, //subtended by alpha current_angle, //measured CCW from 3 o'clock next_angle; //measured CCW from 3 o'clock // ----- calculate arc delta_x = thisX - nextX; delta_y = thisY - nextY; chord = sqrt(delta_x * delta_x + delta_y * delta_y); radius = sqrt(I * I + J * J); alpha = 2 * asin(chord / (2 * radius)); //see construction lines arc = alpha * radius; //radians // ----- sub-divide alpha int segments = 1; if (arc > ARC_MAX) { segments = (int)(arc / ARC_MAX); beta = alpha / segments; } else { beta = alpha; } // ----- calculate current angle /* atan2() angles between 0 and PI are CCW +ve from 3 o'clock. atan2() angles between 2*PI and PI are CW -ve relative to 3 o'clock */ current_angle = atan2(-J, -I); if (current_angle <= 0) current_angle += 2 * PI; //angles now 360..0 degrees CW // ----- plot intermediate CW co-ordinates next_angle = current_angle; //initialise angle for (int segment = 1; segment < segments; segment++) { next_angle -= beta; //move CW around circle if (next_angle < 0) next_angle += 2 * PI; //check if angle crosses zero newX = circleX + radius * cos(next_angle); //standard circle formula newY = circleY + radius * sin(next_angle); move_to(newX, newY); } // ----- draw final line move_to(nextX, nextY); } } //---------------------------------------------------------------------------- // DRAW ARC COUNTER-CLOCKWISE (G03) //---------------------------------------------------------------------------- /* We know the start and finish co-ordinates which allows us to calculate the chord length. We can also calculate the radius using the biarc I,J values. If we bisect the chord the center angle becomes 2*asin(chord/(2*radius)). The arc length may now be calculated using the formula arc_length = radius*angle. */ void draw_arc_ccw(float x, float y, float i, float j) { // ----- inkscape sometimes produces some crazy values for i,j if ((i < -100) || (i > 100) || (j < -100) || (j > 100)) { move_to(x, y); } else { // ----- variables float thisX = LAST_X / SCALE_FACTOR, //current unscaled X co-ordinate thisY = LAST_Y / SCALE_FACTOR, //current unscaled Y co-ordinate nextX = x, //next X co-ordinate nextY = y, //next Y co-ordinate newX, //interpolated X co-ordinate newY, //interpolated Y co-ordinate I = i, //horizontal distance thisX from circle center J = j, //vertical distance thisY from circle center circleX = thisX + I, //circle X co-ordinate circleY = thisY + J, //circle Y co-ordinate delta_x, //horizontal distance between thisX and nextX delta_y, //vertical distance between thisY and nextY chord, //line_length between lastXY and nextXY radius, //circle radius alpha, //interior angle of arc beta, //fraction of alpha arc, //subtended by alpha current_angle, //measured CCW from 3 o'clock next_angle; //measured CCW from 3 o'clock // ----- calculate arc delta_x = thisX - nextX; delta_y = thisY - nextY; chord = sqrt(delta_x * delta_x + delta_y * delta_y); radius = sqrt(I * I + J * J); alpha = 2 * asin(chord / (2 * radius)); //see construction lines arc = alpha * radius; //radians // ----- sub-divide alpha int segments = 1; if (arc > ARC_MAX) { segments = (int)(arc / ARC_MAX); beta = alpha / segments; } else { beta = alpha; } // ----- calculate current angle /* tan2() angles between 0 and PI are CCW +ve from 3 o'clock. atan2() angles between 2*PI and PI are CW -ve relative to 3 o'clock */ current_angle = atan2(-J, -I); if (current_angle <= 0) current_angle += 2 * PI; //angles now 360..0 degrees CW // ----- plot intermediate CCW co-ordinates next_angle = current_angle; //initialise angle for (int segment = 1; segment < segments; segment++) { next_angle += beta; //move CCW around circle if (next_angle > 2 * PI) next_angle -= 2 * PI; //check if angle crosses zero newX = circleX + radius * cos(next_angle); //standard circle formula newY = circleY + radius * sin(next_angle); move_to(newX, newY); } // ----- draw final line move_to(nextX, nextY); } } //--------------------------------------------------------------------------- // PEN_UP // Raise the pen // Changing the value in OCR2B changes the pulse-width to the SG-90 servo //--------------------------------------------------------------------------- void pen_up() { OCR2B = SERVO_MAX; //1mS pulse (fast PWM) delay(100); //give pen-lift time to respond } //--------------------------------------------------------------------------- // PEN_DOWN // Lower the pen // Changing the value in OCR2B changes the pulse-width to the SG-90 servo //--------------------------------------------------------------------------- void pen_down() { OCR2B = SERVO_MIN; //2mS pulse (fast PWM) delay(100); //give pen-lift time to respond } // ---------------------------------------- // ABC // ---------------------------------------- void abc() { process(F("T2 S3")); process(F("G00 X50.600359 Y23.420344")); process(F("G02 X50.752716 Y22.976260 I-3.135884 J-1.324038")); process(F("G02 X50.785093 Y22.730023 I-0.920147 J-0.246237")); process(F("G02 X50.395324 Y21.695296 I-1.568337 J0.000000")); process(F("G02 X48.616901 Y20.260423 I-5.033669 J4.419324")); process(F("G02 X46.381993 Y19.348409 I-4.838496 J8.662483")); process(F("G02 X44.183295 Y19.054795 I-2.198698 J8.085548")); process(F("G02 X41.865268 Y19.467670 I0.000000 J6.713555")); process(F("G02 X40.245550 Y20.503495 I1.545608 J4.201152")); process(F("G02 X39.219290 Y22.122336 I3.157768 J3.136575")); process(F("G02 X38.806572 Y24.470408 I6.473066 J2.348072")); process(F("G02 X39.490101 Y28.182255 I10.420197 J0.000000")); process(F("G02 X41.412290 Y31.305554 I9.193131 J-3.504638")); process(F("G02 X44.336973 Y33.441702 I6.709781 J-6.116396")); process(F("G02 X47.644620 Y34.164064 I3.307648 J-7.211572")); process(F("G02 X49.085783 Y34.013721 I-0.000000 J-6.982526")); process(F("G02 X50.133662 Y33.639032 I-0.850084 J-4.030028")); process(F("G02 X50.927697 Y32.982080 I-1.126976 J-2.170474")); process(F("G02 X51.144836 Y32.355618 I-0.795126 J-0.626462")); process(F("G02 X50.979946 Y31.746676 I-1.206859 J0.000000")); process(F("G02 X50.269784 Y30.858305 I-3.386486 J1.979114")); process(F("G03 X48.739474 Y32.638692 I-4.305181 J-2.152593")); process(F("G03 X46.934854 Y33.211228 I-1.804620 J-2.557788")); process(F("G03 X44.865511 Y32.640761 I-0.000000 J-4.038459")); process(F("G03 X42.812375 Y30.751354 I3.496454 J-5.859673")); process(F("G03 X41.521944 Y28.150097 I7.294760 J-5.239488")); process(F("G03 X41.052544 Y25.024608 I10.170799 J-3.125489")); process(F("G03 X41.358190 Y23.047268 I6.548917 J0.000000")); process(F("G03 X42.102608 Y21.709126 I3.656766 J1.158154")); process(F("G03 X43.314946 Y20.829195 I2.521185 J2.198476")); process(F("G03 X44.961119 Y20.493773 I1.646173 J3.871797")); process(F("G03 X47.727663 Y21.168894 I0.000000 J6.006005")); process(F("G03 X50.600359 Y23.420344 I-4.544548 J8.756936")); process(F("G01 X50.600359 Y23.420344")); process(F("G00 X23.454230 Y28.699836")); process(F("G02 X23.258509 Y29.247403 I2.678175 J1.266042")); process(F("G02 X23.201437 Y29.711010 I1.854425 J0.463606")); process(F("G02 X23.715287 Y31.069809 I2.053497 J0.000000")); process(F("G02 X25.904382 Y32.773699 I5.614239 J-4.954789")); process(F("G02 X28.704691 Y33.800933 I5.587639 J-10.901752")); process(F("G02 X31.854753 Y34.164064 I3.150061 J-13.481375")); process(F("G02 X33.604787 Y33.959798 I0.000000 J-7.598769")); process(F("G02 X34.771598 Y33.473743 I-0.900681 J-3.805687")); process(F("G02 X35.615458 Y32.630428 I-1.363090 J-2.207829")); process(F("G02 X35.889723 Y31.665300 I-1.560988 J-0.965128")); process(F("G02 X35.303747 Y29.921282 I-2.888311 J0.000000")); process(F("G02 X32.943707 Y27.776167 I-6.918162 J5.240505")); process(F("G02 X34.567939 Y27.139583 I-2.104158 J-7.759112")); process(F("G02 X35.636931 Y26.366360 I-2.132406 J-4.073640")); process(F("G02 X36.379807 Y25.321353 I-2.380949 J-2.479122")); process(F("G02 X36.618935 Y24.227336 I-2.383015 J-1.094017")); process(F("G02 X36.026166 Y22.197076 I-3.773251 J0.000000")); process(F("G02 X34.061832 Y20.221533 I-5.518247 J3.522571")); process(F("G02 X31.369264 Y19.027768 I-5.128625 J7.934286")); process(F("G02 X27.868393 Y18.568653 I-3.500871 J13.117974")); process(F("G02 X25.793101 Y19.167138 I0.000000 J3.897363")); process(F("G02 X25.194616 Y20.250700 I0.681659 J1.083563")); process(F("G02 X25.225337 Y20.646314 I2.562654 J-0.000000")); process(F("G02 X25.486301 Y22.117485 I35.898712 J-5.609165")); process(F("G01 X26.857219 Y29.010969")); process(F("G03 X26.998207 Y29.839815 I-14.262137 J2.852427")); process(F("G03 X27.022507 Y30.187429 I-2.474194 J0.347614")); process(F("G03 X26.964582 Y30.506866 I-0.909758 J0.000000")); process(F("G03 X26.789159 Y30.809689 I-0.989871 J-0.371202")); process(F("G02 X28.084797 Y31.229045 I4.918140 J-12.983875")); process(F("G02 X28.587881 Y31.295831 I0.503083 J-1.861405")); process(F("G02 X29.002366 Y31.107501 I0.000000 J-0.550275")); process(F("G02 X29.190696 Y30.605510 I-0.574861 J-0.501991")); process(F("G02 X29.174585 Y30.432163 I-0.940630 J0.000000")); process(F("G02 X28.869843 Y28.894292 I-74.974595 J14.057713")); process(F("G01 X27.596154 Y22.506398")); process(F("G03 X27.407065 Y21.395624 I25.119200 J-4.847563")); process(F("G03 X27.382252 Y21.057695 I2.288700 J-0.337928")); process(F("G03 X27.843772 Y20.294140 I0.862387 J0.000000")); process(F("G03 X29.715731 Y19.832619 I1.871959 J3.565639")); process(F("G03 X31.526735 Y20.128159 I0.000000 J5.696494")); process(F("G03 X32.992323 Y20.931299 I-1.502222 J4.480076")); process(F("G03 X34.026640 Y22.200410 I-2.503366 J3.096265")); process(F("G03 X34.363240 Y23.585630 I-2.682024 J1.385220")); process(F("G03 X34.148489 Y24.695436 I-2.975045 J-0.000000")); process(F("G03 X33.604861 Y25.471860 I-1.940658 J-0.780263")); process(F("G03 X32.768796 Y25.999000 I-1.964159 J-2.188645")); process(F("G03 X31.076926 Y26.521924 I-3.621282 J-8.717909")); process(F("G02 X30.432077 Y26.335937 I-1.252000 J3.130013")); process(F("G02 X29.696283 Y26.269132 I-0.735794 J4.018591")); process(F("G02 X29.445459 Y26.286414 I0.000000 J1.828837")); process(F("G02 X29.064300 Y26.356635 I0.596050 J4.304919")); process(F("G02 X29.438640 Y27.338746 I5.106656 J-1.384047")); process(F("G02 X29.764344 Y27.756722 I1.202868 J-0.601434")); process(F("G02 X30.234517 Y28.000252 I0.776340 J-0.923211")); process(F("G02 X31.135261 Y28.116468 I0.900744 J-3.432550")); process(F("G02 X31.378139 Y28.111033 I0.000000 J-5.429361")); process(F("G02 X31.786692 Y28.087298 I-0.689212 J-15.391372")); process(F("G03 X33.457741 Y29.806863 I-4.247308 J5.799206")); process(F("G03 X33.857653 Y31.091652 I-1.863851 J1.284789")); process(F("G03 X33.240526 Y32.234356 I-1.366508 J-0.000000")); process(F("G03 X31.174154 Y32.851482 I-2.066372 J-3.150932")); process(F("G03 X27.293198 Y31.874110 I-0.000000 J-8.193950")); process(F("G03 X23.454230 Y28.699836 I6.012387 J-11.179941")); process(F("G01 X23.454230 Y28.699836")); process(F("G00 X12.370209 Y25.345461")); process(F("G01 X14.334220 Y25.296848")); process(F("G03 X16.344033 Y25.341207 I0.000000 J45.552596")); process(F("G03 X17.416355 Y25.432967 I-0.576039 J13.043259")); process(F("G02 X17.057498 Y28.851447 I66.264688 J8.684258")); process(F("G02 X16.969105 Y31.091652 I28.343468 J2.240205")); process(F("G01 X16.978828 Y31.820863")); process(F("G02 X16.654582 Y31.415231 I-24.362686 J19.142120")); process(F("G02 X15.539850 Y30.051310 I-276.590024 J224.919481")); process(F("G03 X13.629409 Y27.498969 I29.639011 J-24.176118")); process(F("G03 X12.574388 Y25.724652 I13.226843 J-9.065587")); process(F("G01 X12.370209 Y25.345461")); process(F("G00 X11.670166 Y24.198168")); process(F("G01 X11.475709 Y23.828703")); process(F("G03 X10.453024 Y21.493002 I14.155155 J-7.589567")); process(F("G03 X10.250633 Y20.289593 I3.476515 J-1.203409")); process(F("G03 X10.316083 Y19.943208 I0.949331 J-0.000000")); process(F("G03 X10.532595 Y19.570105 I1.323570 J0.518696")); process(F("G03 X10.300257 Y19.489445 I3.137841 J-9.413445")); process(F("G03 X9.482530 Y19.190914 I42.222649 J-116.924015")); process(F("G02 X9.097875 Y19.086190 I-0.855158 J2.382242")); process(F("G02 X8.763041 Y19.054795 I-0.334835 J1.769854")); process(F("G02 X8.277401 Y19.249753 I0.000000 J0.702344")); process(F("G02 X8.082443 Y19.706223 I0.436907 J0.456470")); process(F("G02 X8.333756 Y20.987389 I3.391281 J0.000000")); process(F("G02 X9.764492 Y23.828703 I18.642339 J-7.606424")); process(F("G01 X10.065899 Y24.324564")); process(F("G01 X9.570035 Y24.324564")); process(F("G03 X8.016212 Y24.170112 I-0.000000 J-7.893143")); process(F("G03 X7.100438 Y23.828703 I0.608728 J-3.031721")); process(F("G02 X7.932520 Y24.978194 I1.964955 J-0.546467")); process(F("G02 X9.560313 Y25.471860 I1.627793 J-2.436874")); process(F("G01 X10.765943 Y25.442689")); process(F("G01 X11.028459 Y25.831603")); process(F("G02 X12.621837 Y28.077029 I38.056380 J-25.317154")); process(F("G02 X15.695415 Y32.005598 I119.673321 J-90.461712")); process(F("G02 X16.806236 Y33.260000 I14.322595 J-11.564166")); process(F("G02 X17.280236 Y33.639032 I1.733405 J-1.681816")); process(F("G02 X17.834414 Y33.882572 I1.177026 J-1.926044")); process(F("G02 X19.312306 Y34.222402 I3.908941 J-13.616125")); process(F("G03 X19.095228 Y32.467101 I23.799291 J-3.834329")); process(F("G03 X19.030344 Y30.965256 I17.348913 J-1.501845")); process(F("G03 X19.256050 Y26.994264 I35.045048 J-0.000000")); process(F("G03 X19.954013 Y22.866141 I38.580488 J4.399934")); process(F("G03 X20.720782 Y20.795305 I8.056900 J1.805858")); process(F("G03 X21.499942 Y19.959018 I1.953184 J1.038650")); process(F("G02 X20.521336 Y19.212088 I-3.388359 J3.424790")); process(F("G02 X19.934567 Y19.054795 I-0.586769 J1.015804")); process(F("G02 X18.944735 Y19.694699 I-0.000000 J1.085511")); process(F("G02 X17.562198 Y24.324564 I16.634711 J7.488692")); process(F("G02 X15.955536 Y24.193605 I-3.198664 J29.321420")); process(F("G02 X14.324497 Y24.149555 I-1.631039 J30.174575")); process(F("G01 X11.670166 Y24.198168")); process(F("G00 X0.0000 Y0.0000")); process(F("T2 S1")); } //---------------------------------------------------------------------------- // TARGET test pattern //---------------------------------------------------------------------------- void target() { process(F("T2 S3")); process(F("G00 X51.309849 Y6.933768")); process(F("G01 X7.893822 Y50.349788")); process(F("G00 X7.893823 Y50.349788")); process(F("G01 X51.309852 Y50.349788")); process(F("G01 X51.309852 Y6.933760")); process(F("G01 X7.893823 Y6.933760")); process(F("G01 X7.893823 Y50.349788")); process(F("G00 X43.948985 Y28.588440")); process(F("G02 X39.778044 Y18.518899 I-14.240483 J0.000001")); process(F("G02 X29.708503 Y14.347958 I-10.069542 J10.069542")); process(F("G02 X19.638962 Y18.518898 I-0.000000 J14.240483")); process(F("G02 X15.468020 Y28.588440 I10.069542 J10.069543")); process(F("G02 X16.552012 Y34.038037 I14.240483 J0.000001")); process(F("G02 X19.638961 Y38.657983 I13.156491 J-5.449596")); process(F("G02 X24.258906 Y41.744932 I10.069543 J-10.069542")); process(F("G02 X29.708503 Y42.828924 I5.449597 J-13.156491")); process(F("G02 X39.778045 Y38.657982 I-0.000001 J-14.240483")); process(F("G02 X43.948985 Y28.588440 I-10.069543 J-10.069541")); process(F("G01 X43.948985 Y28.588440")); process(F("G00 X51.309849 Y50.349788")); process(F("G01 X7.893822 Y6.933768")); process(F("G00 X0.0000 Y0.0000")); process(F("T2 S1")); } //---------------------------------------------------------------------------- // RADIALS test pattern //---------------------------------------------------------------------------- void radials() { // ----- move to the centre of the square pen_up(); move_to(100, 100); // ----- draw octant 0 radials pen_down(); move_to(150, 100); pen_up(); move_to(100, 100); pen_down(); move_to(150, 125); pen_up(); move_to(100, 100); pen_down(); move_to(150, 150); pen_up(); move_to(100, 100); // ----- draw octant 1 radials pen_down(); move_to(125, 150); pen_up(); move_to(100, 100); pen_down(); move_to(100, 150); pen_up(); move_to(100, 100); // ----- draw octant 2 radials pen_down(); move_to(75, 150); pen_up(); move_to(100, 100); pen_down(); move_to(50, 150); pen_up(); move_to(100, 100); // ----- draw octant 3 radials pen_down(); move_to(50, 125); pen_up(); move_to(100, 100); pen_down(); move_to(50, 100); pen_up(); move_to(100, 100); // ----- draw octant 4 radials pen_down(); move_to(50, 75); pen_up(); move_to(100, 100); pen_down(); move_to(50, 50); pen_up(); move_to(100, 100); // ----- draw octant 5 radials pen_down(); move_to(75, 50); pen_up(); move_to(100, 100); pen_down(); move_to(100, 50); pen_up(); move_to(100, 100); // ----- draw octant 6 radials pen_down(); move_to(125, 50); pen_up(); move_to(100, 100); pen_down(); move_to(150, 50); pen_up(); move_to(100, 100); // ----- draw octant 7 radials pen_down(); move_to(150, 75); pen_up(); move_to(100, 100); pen_up(); // ----- draw box move_to(50, 50); pen_down(); move_to(50, 150); move_to(150, 150); move_to(150, 50); move_to(50, 50); pen_up(); // home -------------- move_to(0.0000, 0.0000); }