
Create the web service application !
Let’s build the application and run it on your development machine. We will adjust the Arduino sketch to
connect to this instance of the application while we test it. Once we are satisfied that everything is working
well, we’ll deploy to the cloud and update the sketch to use the cloud instance.

Here is the Ruby code, all in a single file named web.rb (this code is available on Github).
!
require ‘sinatra' !
configure do
 require 'redis'
 configure(:production) do
 uri = URI.parse(ENV["REDISCLOUD_URL"])
 $redis = Redis.new(:host => uri.host,
 :port => uri.port,
 :password => uri.password)
 end
 configure(:development){ $redis = Redis.new }
 set :server, :puma
end

get '/' do
 erb :index
end

post '/post_message' do
 require "json"
 $redis.set(params[:element_1],
 { "message" => params[:element_2],
 "buzzer" => params[:element_3_1]}.to_json)
 "Thank you, message posted."
end
 !

The Sinatra configuration block.
First, imports the redis gem so that
your server can store and retrieve
data. When the server runs on
Heroku, it is set to run in production
mode. In this case, it will make use
of the Redis server offered on the
Heroku platform (more about this
later).

If your server is running on the
development machine, use the Redis
default settings.

For both environments, the
application web server is Puma.

Use the Sinatra DSL.

Define the root (“/“) route. The code
between “do” and “end” will execute.
“get” refers to the HTTP verb “GET”.

Run the code in index.erb,
inside the views directory.

Define the POST route for /
post_message. The code that follows
take the data from a web form and
stores it in Redis.

Data is stored in JSON format, so
require it in this block.

This string is
returned to the
browser and
shown to the user.

Form parameters are stored in the params array. With $redis.set we set a
key-value pair with key being the value of params[:element_1], value
being a hash made of (1) key “message” and the value of
param[:element_2] and (2) key “buzzer” and the value of
params[:element_3_1]. In Redis, objects must be serialized, so we do this
by calling the to_json method. This converts the hash into a JSON-
formatted string.

https://github.com/futureshocked/home-alert

get '/get_message/:dmd_id' do
 require "json"
 response = JSON.parse(
 $redis.get(params[:dmd_id])
)
 if response["buzzer"]
 "1" + response["message"] + "\n"
 else
 "0" + response["message"] + "\n"
 end
end !!!!!!!

Define the GET request route for “/
get_message”. This route accepts an
argument, “:dmd_id”, which is
accessible via the params array.Retrieve the value stored against key in
params[:dmd_id] in Redis. This returns
the serialised JSON representation that
was created in the post_message
method. We remake the actual hash
object by calling the JSON.parse
method and applying it to the string
that Redis returns.

If the hash return from the Redis store contains the
buzzer key, then start the response string with a “1”,
followed with the message, otherwise start with a “0”.
The Arduino will evaluate this first character to
determine if it should activate the buzzer.

